Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw, Hoża 74, 00-682 Warszawa, Poland
Bibliografia
[1] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics. I, Springer, Berlin, 1981.
[2] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.
[3] J.-H. Lu and A. Weinstein, Poisson Lie Groups, dressing transformations and Bruhat decompositions, J. Diff. Geom. 31 (1990), 501-526.
[4] K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, LMS Lecture Note Series 124, Cambridge Univ. Press, 1987.
[5] T. Masuda, Y. Nakagami and S. L. Woronowicz, A C*-algebraic framework for the quantum groups, to appear.
[6] J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Math. 793 (1980).
[7] A. Weinstein, Geometric Models for Noncommutative Algebras, Lecture Notes in Math. 227, preliminary version.
[8] S. L. Woronowicz, Unbounded Elements Affiliated with C*-Algebras and Non-Compact Quantum Groups, Comm. Math. Phys. 136 (1991), 399-432.
[9] S. L. Woronowicz, From Multiplicative Unitaries to Quantum Groups, Int. Journal of Math. 7, No.1 (1996), 127-149.
[10] S. L. Woronowicz, Pseudospaces, pseudogroups and Pontriyagin duality, Proc. of the International Conference on Math. Phys., Lausanne 1979, Lecture Notes in Math. 116.
[11] S. Zakrzewski, Quantum and classical pseudogroups I, Comm. Math. Phys. 134 (1990), 347-370.
[12] S. Zakrzewski, Quantum and classical pseudogroups II, Comm. Math. Phys. 134 (1990), 371-395.