ArticleOriginal scientific text

Title

C*-algebra of a differential groupoid

Authors 1

Affiliations

  1. Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw, Hoża 74, 00-682 Warszawa, Poland

Bibliography

  1. O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics. I, Springer, Berlin, 1981.
  2. A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.
  3. J.-H. Lu and A. Weinstein, Poisson Lie Groups, dressing transformations and Bruhat decompositions, J. Diff. Geom. 31 (1990), 501-526.
  4. K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, LMS Lecture Note Series 124, Cambridge Univ. Press, 1987.
  5. T. Masuda, Y. Nakagami and S. L. Woronowicz, A C*-algebraic framework for the quantum groups, to appear.
  6. J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Math. 793 (1980).
  7. A. Weinstein, Geometric Models for Noncommutative Algebras, Lecture Notes in Math. 227, preliminary version.
  8. S. L. Woronowicz, Unbounded Elements Affiliated with C*-Algebras and Non-Compact Quantum Groups, Comm. Math. Phys. 136 (1991), 399-432.
  9. S. L. Woronowicz, From Multiplicative Unitaries to Quantum Groups, Int. Journal of Math. 7, No.1 (1996), 127-149.
  10. S. L. Woronowicz, Pseudospaces, pseudogroups and Pontriyagin duality, Proc. of the International Conference on Math. Phys., Lausanne 1979, Lecture Notes in Math. 116.
  11. S. Zakrzewski, Quantum and classical pseudogroups I, Comm. Math. Phys. 134 (1990), 347-370.
  12. S. Zakrzewski, Quantum and classical pseudogroups II, Comm. Math. Phys. 134 (1990), 371-395.
Pages:
263-281
Main language of publication
English
Published
2000
Exact and natural sciences