Division of Mathematical Methods in Physics, University of Warsaw, Hoża St. 74, 00-682 Warszawa, Poland
Bibliografia
[1] J. F. Adams, Lectures on Lie groups, W. A. Benjamin, Inc., 1969.
[2] V. I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, 1978.
[3] A. V. Bolsinov, Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), No 1; English transl. in: Math. USSR-Izv. 38 (1992), 69-90.
[4] N. Bourbaki, Groupes et algèbres de Lie, VII,VIII, Hermann, 1975.
[5] N. Bourbaki, Groupes et algèbres de Lie, IX, Masson, 1982.
[6] S. S. Chern and P. A. Griffiths, An inequality for the rank of a web and webs of maximum rank, Ann. Scuola Norm. Sup. Pisa 5 (1978), 539-557.
[7] S. S. Chern and P. A. Griffiths, Abel's theorem and webs, Jahresber. Deutsch. Math.-Verein. 80 (1978), 13-110.
[8] A. T. Fomenko and A. S. Mishchenko, Euler equations in finite-dimensional Lie groups, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), 396-416; English transl. in: Math USSR-Izv. 12 (1978).
[9] A. T. Fomenko, Integrability and nonintegrability in geometry and mechanics, Kluwer Academic Publishers, 1988.
[10] I. M. Gelfand and I. S. Zakharevich, Spectral theory for a pair of skew-symmetrical operators on $S^1$, Functional Anal. Appl. 23 (1989), 85-93.
[11] I. M. Gelfand and I. S. Zakharevich, Webs, Veronese curves, and bihamiltonian systems, J. Funct. Anal. 99 (1991), 150-178.
[12] I. M. Gelfand and I. S. Zakharevich, On the local geometry of a bihamiltonian structure, in: The Gelfand mathematical seminars, 1990-1992, Birkhäuser, Boston, 1993, 51-112.
[13] I. M. Gelfand and I. S. Zakharevich, Webs, Lenard schemes, and the local geometry of bihamiltonian Toda and Lax structures, math.DG/9903080.
[14] I. S. Zakharevich, Kronecker webs, bihamiltonian structures, and the method of argument translation, math.SG/9908034.
[15] A. L. Onishchik and E. B. Vinberg, Lie groups and algebraic groups, Springer-Verlag, 1990.
[16] R. Steinberg, Invariants of finite reflection groups, Canad. J. Math. 12 (1960), 616-618.