ArticleOriginal scientific text
Title
Nambu-Poisson Tensors on Lie Groups
Authors 1
Affiliations
- Department of Mathematics, Gifu Keizai University, 5-50 Kitagata, Ogaki-city, Gifu, 503-8550, Japan
Abstract
First as an application of the local structure theorem for Nambu-Poisson tensors, we characterize them in terms of differential forms. Secondly left invariant Nambu-Poisson tensors on Lie groups are considered.
Bibliography
- S. S. Chern, On integral geometry in Klein spaces, Ann. of Math. 43 (1942), 178-189.
- C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124.
- B.-Y. Chu, Symplectic homogeneous spaces, Trans. Amer. Math. Soc. 197 (1974), 145-159.
- P. Gautheron, Some remarks concerning Nambu mechanics, Lett. Math. Phys. 37 (1996). 103-116.
- N. Nakanishi, On Nambu-Poisson manifolds, Rev. Math. Phys. 10 (1998), 499-510.
- L. Takhtajan, On foundation of the generalized Nambu mechanics, Commun. Math. Phys. 160 (1994), 295-315.
- I. Vaisman, Lectures on the geometry of Poisson manifolds, Birkhäuser, Basel, 1994.
- A. Weinstein, The local structure of Poisson manifolds, J. Diff. Geom. 18 (1983), 523-557.