ArticleOriginal scientific text

Title

Classification of almost spherical pairs of compact simple Lie groups

Authors 1, 2

Affiliations

  1. Department of Applied Mathematics, State University "L'viv Politechnica", S. Bandery 12, 79013 L'viv, Ukraine
  2. Department of Mechanics and Mathematics, Moscow State University, 117234 Moscow, Russia

Abstract

All homogeneous spaces G/K (G is a simple connected compact Lie group, K a connected closed subgroup) are enumerated for which arbitrary Hamiltonian flows on T*(G/K) with G-invariant Hamiltonians are integrable in the class of Noether integrals and G-invariant functions.

Bibliography

  1. [Ar] Sh. Araki, On root systems and infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ. 13 (1962), 90-126.
  2. [Bo1] N. Bourbaki, Lie groups and algebras, I-III, Mir, Moscow, 1970 (in Russian).
  3. [Bo2] N. Bourbaki, Lie groups and algebras, IV-VI, Mir, Moscow, 1972 (in Russian).
  4. [Bo3] N. Bourbaki, Lie groups and algebras, VII,VIII, Mir, Moscow, 1978 (in Russian).
  5. [Br] M. Brion, Classification des espaces homogenes spheriques, Compositio Math. 63 (1987), 189-208.
  6. [Ch] M. L. Chumak, Integrable G-invariant Hamiltonian systems and uniform spaces with simple spectrum, Func. Anal. and its Applic. 20 (1986), 91-92.
  7. [Dy1] E. B. Dynkin, Maximal subgroups of classical groups, Trudy Moskov. Mat. Obshchestva 1 (1952), 39-151 (in Russian); Am. Math. Soc. Transl. 2 (1957), 245-378.
  8. [Dy2] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Matem. Sbornik 30 (1952), 349-462 (in Russian); Am. Math. Soc. Transl. 2 (1957), 111-244.
  9. [El] A. G. Elashvili, Canonical form and stationary subalgebras of points in general position of simple linear Lie groups, Func. Anal. and its Applic. 6 (1972), 51-62 (in Russian).
  10. [GG] M. Goto and F. Grosshans, Semisimple Lie algebras, Vol. 38, Lecture Notes in Pure and Applied Math., New York and Basel, 1978.
  11. [GS1] V. Guillemin and S. Sternberg, Multiplicity-free spaces, J. Differential Geometry 19 (1984), 31-56.
  12. [GS2] V. Guillemin and S. Sternberg, On collective complete integrability according to the method of Thimm, Ergod. Theory and Dynam. Syst. 3 (1983), 219-230.
  13. [GS3] V. Guillemin and S. Sternberg, Geometric asymptotics, AMS, Providence, Rhode Island, 1977.
  14. [He] S. Helgason, Differential geometry and symmetric spaces, Academic Press, 1962.
  15. [IW] K. Ii and S. Watanabe, Complete integrability of the geodesic flows on symmetric spaces, in: Geometry of Geodesics and Related Topics, Tokyo, K. Shiohama (ed.), North-Holland, 1984, 105-124.
  16. [Kr] M. Kramer, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compositio Math. 38 (1979), 129-153.
  17. [Mi] A. S. Mishchenko, Integration of geodesic flows on symmetric spaces, Mat. Zametki 32 (1982), 257-262 (in Russian).
  18. [My1] I. V. Mykytiuk, Homogeneous spaces with integrable G-invariant Hamiltonian flows, Math. USSR Izvestiya 23 (1984), 511-523.
  19. [My2] I. V. Mykytiuk, On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces, Math. USSR Sbornik 57 (1987), 527-546.
  20. [On] A. L. Onishchik, Inclusion relations between transitive compact transformation groups, Trudy Mosc. Matem. Obshchestva 11 (1962), 199-242 (in Russian).
  21. [PM] A. K. Prykarpatsky and I. V. Mykytiuk, Algebraic integrability of nonlinear dynamical systems on manifolds. Classical and quantum aspects, Vol. 443, Math. and its Appl., Kluwer Academic Publishers, 1998.
  22. [Ti] A. Timm, Integrable geodesic flows on homogeneous spaces, Ergod. Theory and Dynam. Syst. 1 (1981), 495-517.
Pages:
231-241
Main language of publication
English
Published
2000
Exact and natural sciences