ArticleOriginal scientific text

Title

On submanifolds and quotients of Poisson and Jacobi manifolds

Authors 1

Affiliations

  1. Institut de Mathématiques, Université Pierre et Marie Curie, 4, place Jussieu, 75252 Paris Cedex 05, France

Abstract

We obtain conditions under which a submanifold of a Poisson manifold has an induced Poisson structure, which encompass both the Poisson submanifolds of A. Weinstein [21] and the Poisson structures on the phase space of a mechanical system with kinematic constraints of Van der Schaft and Maschke [20]. Generalizations of these results for submanifolds of a Jacobi manifold are briefly sketched.

Bibliography

  1. F. Cantrijn, M. de León and D. Martín de Diego, On almost Poisson structures in nonholonomic mechanics, Nonlinearity 12 (1999), 721-737.
  2. C. Carathéodory, Calculus of variations and partial differential equations of the first order, Vols. I and II, Holden Day, San Francisco, 1967 (first edition in German: Teubner, Berlin, 1935).
  3. A. Coste, P. Dazord and A. Weinstein, Groupoïdes symplectiques, Publ. Dép. Math. Univ. Lyon I, 2/A (1987), 1-62.
  4. P. Dazord, A. Lichnerowicz and C.-M. Marle, Structure locale des variétés de Jacobi, J. Math. pures et appl. 70 (1991), 101-152.
  5. P. Dazord and D. Sondaz, Variétés de Poisson - Algébroïdes de Lie, Publ. Dép. Math. Univ. Lyon I, 1/B (1988), 1-68.
  6. I. M. Gel'fand and I. Ya. Dorfman, Hamiltonian operators and the classical Yang-Baxter equation, Funct. Anal. Apl. 16 (1982), 241-248.
  7. M. V. Karasev and V.P. Maslov, Nonlinear Poisson brackets, geometry and quantization, Translations of Mathematical Monographs Vol. 119, American mathematical Society, Providence, 1993.
  8. Y. Kerbrat et Z. Souici-Benhammadi, Variétés de Jacobi et groupoïdes de contact, C. R. Acad. Sc. Paris 317, I (1993), 81-86.
  9. A. Kirillov, Local Lie algebras, Russian Math. Surveys 31 (1976), 55-75.
  10. W. S. Koon and J. E. Marsden, Poisson reduction of nonholonomic mechanical systems with symmetry, Proceedings of the Workshop on Nonholonomic Constraints in Dynamics (Calgary, August 26-29 1997), Reports on Mathematical Physics 42 (1998), 103-134.
  11. J. L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: É. Cartan et les mathématiques d'aujourd'hui, Astérisque, numéro hors série, 1985, 257-271.
  12. P. Libermann, Problème d'équivalence et géométrie symplectique, in: IIIe. rencontre de géométrie du Schnepfenried, vol. 1, 10-15 mai 1982. Astérisque 107-108 (1983), 43-68.
  13. P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics, Reidel, Dordrecht, 1987.
  14. A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry 12 (1977), 253-300.
  15. A. Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. pures et appl. 57 (1978), 453-488.
  16. F. Magri and C. Morosi, A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderno S. 19 (1984), University of Milan.
  17. C.-M. Marle, Reduction of constrained mechanical systems and stability of relative equilibria, Commun. Math. Phys. 174 (1995), 295-318.
  18. J. Pradines, Théorie de Lie pour les groupoïdes différentiels, calcul différentiel dans la catégorie des groupoïdes infinitésimaux, C. R. Acad. Sci. Paris, A, 264 (1967), 245-248.
  19. I. Vaisman, Lectures on the Geometry of Poisson manifolds, Birkhäuser, Basel, 1994.
  20. A. J. Van der Schaft and B. M. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems, Reports on Mathematical Physics 34 (1994), 225-233.
  21. A. Weinstein, The local structure of Poisson manifolds, J. Differential Geometry 18 (1983), 523-557 and 22 (1985), 255.
Pages:
197-209
Main language of publication
English
Published
2000
Exact and natural sciences