Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 51 | 1 | 165-173

Tytuł artykułu

Some Remarks on Dirac Structures and Poisson Reductions

Autorzy

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
Dirac structures are characterized in terms of their characteristic pairs defined in this note and then Poisson reductions are discussed from the point of view of Dirac structures.

Rocznik

Tom

51

Numer

1

Strony

165-173

Daty

wydano
2000

Twórcy

autor
  • Department of Mathematics, Peking University, Beijing, 100871, China

Bibliografia

  • [1] A. Alekseev and Y. Kosmann-Schwarzbach, Manin pairs and moment maps, preprint.
  • [2] T. J. Courant, Dirac manifolds, Trans. A.M.S. 319 (1990), 631-661.
  • [3] A. Diatta and A. Medina, Poisson homogeneous spaces of a Poisson Lie group, preprint.
  • [4] T. Kimura, Generalized classical BRST cohomology and reduction of Poisson manifolds, Commun. Math. Phys. 151 (1993), 155-182.
  • [5] Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math. 41 (1995), 153-165.
  • [6] Z.-J. Liu, A. Weinstein and P. Xu, Manin triples for Lie bialgebroids, J. Diff. Geom. 45 (1997), 547-574.
  • [7] Z.-J. Liu, A. Weinstein and P. Xu, Dirac structures and Poisson homogeneous spaces, Commun. Math. Phys. 192 (1998), 121-144.
  • [8] J.-H. Lu, Momentum mappings and reductions of Poisson actions, in: Symplectic Geometry, Groupoids and Integrable Systems, P. Dazord and A. Weinstein, eds., Springer-Verlag 1991, 209-226.
  • [9] K. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 18 (1994), 415-452.
  • [10] J. E. Marsden and T. Ratiu, Reduction of Poisson manifolds, Lett. Math. Phys. 11 (1986), 161-169.
  • [11] K. Mikami and A. Weinstein, Moments and reduction for symplectic groupoid actions, Publ. RIMS Kyoto Univ. 24 (1988), 121-140.
  • [12] J. Stasheff, Homological reduction of constrained Poisson algebras, J. Diff. Geom. 45 (1997), 221-240.
  • [13] A. Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40 (1988), 705-727.

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-bcpv51z1p165bwm