ArticleOriginal scientific text

Title

Some Remarks on Dirac Structures and Poisson Reductions

Authors 1

Affiliations

  1. Department of Mathematics, Peking University, Beijing, 100871, China

Abstract

Dirac structures are characterized in terms of their characteristic pairs defined in this note and then Poisson reductions are discussed from the point of view of Dirac structures.

Bibliography

  1. A. Alekseev and Y. Kosmann-Schwarzbach, Manin pairs and moment maps, preprint.
  2. T. J. Courant, Dirac manifolds, Trans. A.M.S. 319 (1990), 631-661.
  3. A. Diatta and A. Medina, Poisson homogeneous spaces of a Poisson Lie group, preprint.
  4. T. Kimura, Generalized classical BRST cohomology and reduction of Poisson manifolds, Commun. Math. Phys. 151 (1993), 155-182.
  5. Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math. 41 (1995), 153-165.
  6. Z.-J. Liu, A. Weinstein and P. Xu, Manin triples for Lie bialgebroids, J. Diff. Geom. 45 (1997), 547-574.
  7. Z.-J. Liu, A. Weinstein and P. Xu, Dirac structures and Poisson homogeneous spaces, Commun. Math. Phys. 192 (1998), 121-144.
  8. J.-H. Lu, Momentum mappings and reductions of Poisson actions, in: Symplectic Geometry, Groupoids and Integrable Systems, P. Dazord and A. Weinstein, eds., Springer-Verlag 1991, 209-226.
  9. K. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 18 (1994), 415-452.
  10. J. E. Marsden and T. Ratiu, Reduction of Poisson manifolds, Lett. Math. Phys. 11 (1986), 161-169.
  11. K. Mikami and A. Weinstein, Moments and reduction for symplectic groupoid actions, Publ. RIMS Kyoto Univ. 24 (1988), 121-140.
  12. J. Stasheff, Homological reduction of constrained Poisson algebras, J. Diff. Geom. 45 (1997), 221-240.
  13. A. Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40 (1988), 705-727.
Pages:
165-173
Main language of publication
English
Published
2000
Exact and natural sciences