ArticleOriginal scientific text

Title

On Liouville forms

Authors 1

Affiliations

  1. 116 Avenue du Général Leclerc, 75014 Paris, France

Abstract

We give different notions of Liouville forms, generalized Liouville forms and vertical Liouville forms with respect to a locally trivial fibration π:E → M. These notions are linked with those of semi-basic forms and vertical forms. We study the infinitesimal automorphisms of these forms; we also investigate the relations with momentum maps.

Bibliography

  1. [A.G.M] D. Alekseevsky, J. Grabowski, G. Marmo and P.W Michor, Poisson structures on the cotangent bundle of a Lie group or a principal bundle and their reductions, J. Math. Phys. 35 (1994) 4909-4927.
  2. [A] V. Arnold, Mathematical methods of classical mechanics, Mir, Moscow 1975, Springer graduate texts in Math. No. 60. Springer-Verlag, New York.
  3. [D.L.M] P. Dazord, A. Lichnerowicz and C.-M. Marle, Structure locale des variétés de Jacobi, J. Math. Pures et Appl. 70 (1991), 101-152.
  4. [D.S] P. Dazord and D. Sondaz, Variétés de Poisson - algébroïdes de Lie, Université Claude Bernard Lyon 1. Publications du département de mathématiques, nouvelle série 1/B (1988), 1-68.
  5. [G] C. Godbillon, Géométrie différentielle et mécanique classique, Hermann, Paris, 1969.
  6. [K] M. Kummer, On the construction of the reduced phase space of a Hamiltonian system with symmetry, Indiana University Math. J. 30 (1981), 281-291.
  7. [L1] P. Libermann, Problèmes d'équivalence et Géométrie symplectique, Proc IIIe rencontre de Géom. Schnepfenried, Astérisque 107-108 (1983), 43-68.
  8. [L2] P. Libermann, Cartan-Darboux theorems for Pfaffian forms on foliated manifolds, Proc. VIth Int. Colloq. Diff. Geom. Santiago (1989), 125-144.
  9. [L.M] P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics, Reidel, Dordrecht,1987.
  10. [R] G. Reeb, Sur les espaces de Finsler et les espaces de Cartan, Colloque C.N.R.S. Géom. différentielle Strasbourg 1953, 35-40, Editions du CNRS Paris, 1953.
  11. [W] A. Weinstein, A universal phase space for particles in Yang-Mills field, Letters in Math. Phys. 2 (1978), 417-420.
Pages:
151-164
Main language of publication
English
Published
2000
Exact and natural sciences