ArticleOriginal scientific text

Title

Deformations of Batalin-Vilkovisky algebras

Authors 1

Affiliations

  1. Institut Girard Desargues (UPRES-A 5028), Université Claude Bernard - Lyon I, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France

Abstract

We show that a graded commutative algebra A with any square zero odd differential operator is a natural generalization of a Batalin-Vilkovisky algebra. While such an operator of order 2 defines a Gerstenhaber (Lie) algebra structure on A, an operator of an order higher than 2 (Koszul-Akman definition) leads to the structure of a strongly homotopy Lie algebra (L-algebra) on A. This allows us to give a definition of a Batalin-Vilkovisky algebra up to homotopy. We also make a conjecture which is a generalization of the formality theorem of Kontsevich to the Batalin-Vilkovisky algebra level.

Bibliography

  1. [A] F. Akman, On some generalizations of Batalin-Vilkovisky algebras, J. Pure Appl. Algebra 120 (1997), no. 2, 105-141
  2. [BK] S. Barannikov and M. Kontsevich, Frobenius manifolds and formality of Lie algebras of polyvector fields, Internat. Math. Res. Notices 1998, no. 4, 201-215.
  3. [BDA] K. Bering, P. H. Damgaard and J. Alfaro, Algebra of Higher Antibrackets, Nucl. Phys. B478 (1996) 459-504.
  4. [G] E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994), no. 2, 265-285.
  5. [GK] E. Getzler and M. Kapranov, Cyclic operads and cyclic homology, in ``Geometry, topology, and physics,'' International Press, Cambridge, MA, 1995, pp. 167-201.
  6. [HS] V. Hinich and V. Schechtman, Homotopy Lie algebras, in: I. M. Gel'fand Seminar, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 1-28.
  7. [H] J. Huebschmann, Lie-Rinehart algebras, Gerstenhaber algebras, and Batalin-Vilkovisky algebras, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 2, 425-440.
  8. [K] M. Kontsevich, Deformation quantization of Poisson manifolds, I, preprint, q-alg/9709040.
  9. [KS] Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Applic. Math. 41 (1995) 153-165.
  10. [Ko] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, The mathematical heritage of Élie Cartan, (Lyon, 1984). Astérisque 1985, Hors Série, 257-271.
  11. [LM] T. Lada and M. Markl, Strongly homotopy Lie algebras, Comm. Algebra 23 (1995), no. 6, 2147-2161.
  12. [LS] T. Lada and J. Stasheff, Introduction to sh Lie algebras for physicists, Int. J. Theor. Phys. 32 (1993), 1087-1104.
  13. [LZ] B. H. Lian and G. J. Zuckerman, New perpectives on the BRST-algebraic structure of string theory, Comm. Math. Phys. 154 (1993), 613-646.
  14. [Li] M. Livernet, Homologie des algèbres de matrices d'une algèbre associative à homotopie près, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 113-116.
  15. [L] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. (2) 39 (1993), no. 3-4, 269-293.
  16. [M] Yu. Manin, Three constructions of Frobenius manifolds: a comparative study, preprint, math.QA/9801006
  17. [P] M. Penkava, L algebras and their cohomology, preprint, q-alg/9512014.
  18. [PS] M. Penkava and A. Schwarz, On some algebraic structures arising in string theory. Perspectives in mathematical physics, Conf. Proc. Lecture Notes Math. Phys., III, Internat. Press, Cambridge, MA, 1994, 219-227.
  19. [R] C. Roger, Algèbres de Lie graduées et quantification, in: Symplectic Geometry and Mathematical Physics, Progress in Math. (Birkhäuser) no. 99, 1991, 374-421.
  20. [Sch] V. Schechtman, Remarks on formal deformations and Batalin-Vilkovisky algebras, preprint, math/9802006.
  21. [S] J. Stasheff, The (secret?) homological algebra of the Batalin-Vilkovisky approach, hep-th/9712157, Secondary calculus and cohomological physics (Moscow, 1997), 195-210, Contemp. Math., 219, Amer. Math. Soc., Providence, RI, 1998.
  22. [Schw] A. Schwarz, Geometry of Batalin-Vilkovisky quantization, Comm. Math. Phys. 155 (1993), no. 2, 249-260.
  23. [T] D. Tamarkin, Another proof of M. Kontsevich formality theorem, preprint, math/9803025.
  24. [V] A. Vaintrob, Lie algebroids and homological fields, Russian Math. Surveys 52 (1997), no.2.
  25. [W] E. Witten, A note on the antibracket formalism, Mod. Phys. Lett., A5, 1990, 487-494.
  26. [Xu] P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, dg-ga/9703001, Comm. Math. Phys. 200 (1999), no. 3, 545-560.
Pages:
131-139
Main language of publication
English
Published
2000
Exact and natural sciences