ArticleOriginal scientific text

Title

Modular vector fields and Batalin-Vilkovisky algebras

Authors 1

Affiliations

  1. U.M.R. 7640 du C.N.R.S., Centre de Mathématiques, Ecole Polytechnique, F-91128 Palaiseau, France

Abstract

We show that a modular class arises from the existence of two generating operators for a Batalin-Vilkovisky algebra. In particular, for every triangular Lie bialgebroid (A,P) such that its top exterior power is a trivial line bundle, there is a section of the vector bundle A whose dP-cohomology class is well-defined. We give simple proofs of its properties. The modular class of an orientable Poisson manifold is an example. We analyse the relationships between generating operators of the Gerstenhaber algebra of a Lie algebroid, right actions on the elements of degree 0, and left actions on the elements of top degree. We show that the modular class of a triangular Lie bialgebroid coincides with the characteristic class of a Lie algebroid with representation on a line bundle.

Bibliography

  1. K. H. Bhaskara and K. Viswanath, Poisson Algebras and Poisson Manifolds, Pitman Res. Notes in Math. 174, Longman, Harlow, 1988.
  2. J.-L. Brylinski, A differential complex for Poisson manifolds, J. Diff. Geom. 28 (1988), 93-114.
  3. J.-L. Brylinski and G. Zuckerman, The outer derivation of a complex Poisson manifold, J. reine angew. Math. 506 (1999), 181-189.
  4. P. Cartier, Some fundamental techniques in the theory of integrable systems, in: Lectures on Integrable Systems, O. Babelon, P. Cartier and Y. Kosmann-Schwarzbach, eds., World Scientific, Singapore, 1994, 1-41.
  5. J.-P. Dufour and A. Haraki, Rotationnels et structures de Poisson quadratiques, C. R. Acad. Sci. Paris 312, Série I (1991), 137-140.
  6. S. Evens, J.-H. Lu and A. Weinstein, Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, Quarterly J. Math., to appear.
  7. M. Gerstenhaber and S. D. Schack, Algebras, bialgebras, quantum groups, and algebraic deformations, Contemp. Math. 134 (1992), M. Gerstenhaber and J. D. Stasheff, eds., 51-92.
  8. J. Grabowski, G. Marmo and A. M. Perelomov, Poisson structures: towards a classification, Mod. Phys. Lett. A8 (1993), 1719-1733.
  9. J. Huebschmann, Poisson cohomology and quantization, J. reine angew. Math. 408 (1990), 459-489.
  10. J. Huebschmann, Duality for Lie-Rinehart algebras and the modular class, J. reine angew. Math. 510 (1999), 103-159.
  11. J. Huebschmann, Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras, Ann. Inst. Fourier 48 (1998), 425-440.
  12. J. Huebschmann, Differential Batalin-Vilkovisky algebras arrising from twilled Lie-Rinehart algebras, this volume.
  13. Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math. 41 (1995), 153-165.
  14. Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré A53 (1990), 35-81, and Dualization and deformation of Lie brackets on Poisson manifolds, in: Differential Geometry and its Applications, J. Janyška and D. Krupka, eds., World Scientific, Singapore, 1990, 79-84.
  15. J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: Astérisque, hors série, Elie Cartan et les mathématiques d'aujourd'hui, Soc. Math. Fr., 1985, 257-271.
  16. Z.-J. Liu and P. Xu, On quadratic Poisson structures, Lett. Math. Phys. 26 (1992), 33-42.
  17. K. C. H. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge Univ. Press, Cambridge, 1987.
  18. K. C. H. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994), 415-452.
  19. Yu. I. Manin, Frobenius Manifolds, Quantum Cohomology and Moduli Spaces, Colloq. Publ. 47, Amer. Math. Soc., Providence, RI, 1999.
  20. C.-M. Marle, The Schouten-Nijenhuis bracket and interior products, J. Geom. Phys. 23 (1997), 350-359.
  21. R. S. Palais, The cohomology of Lie rings, Proc. Symp. Pure Math. 3, Amer. Math. Soc., Providence R.I. 1961, 245-248.
  22. V. Schechtman, Remarks on formal deformations and Batalin-Vilkovisky algebras, preprint math.AG/9802006.
  23. I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Birkhäuser, Basel, 1994.
  24. A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394.
  25. A. Weinstein, Poisson geometry, Diff. Geom. Appl. 9 (1998), 213-238.
  26. P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), 545-560.
Pages:
109-129
Main language of publication
English
Published
2000
Exact and natural sciences