Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 50 | 1 | 305-320

Tytuł artykułu

Waves of excitations in heterogeneous annular region, asymmetric arrangement

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
This paper deals with the propagation of waves around a circular obstacle. The medium is heterogeneous: the velocity is smaller in the inner region and greater in the outer region. The interface separating the two regions is also circular, and the obstacle is located eccentrically inside it. The different front portraits are classified.

Rocznik

Tom

50

Numer

1

Strony

305-320

Daty

wydano
1999

Twórcy

  • Department of Chemical Physics, Technical University, Budapest H-1521, Hungary
  • Department of Chemical Physics, Technical University, Budapest H-1521, Hungary
  • Department of Chemical Physics, Technical University, Budapest H-1521, Hungary

Bibliografia

  • [1] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1978.
  • [2] V. I. Arnold, Singularities of Caustics and Wave Fronts, Math. Appl. (Soviet Ser.) 62, Kluwer Academic Publ., Dordrecht, 1990.
  • [3] H. Farkas, I. Farago and P. L. Simon, Qualitative properties of conductive heat transfer, in: Thermodynamics of Energy Conversion and Transport, S. Sieniutycz and A. De Vos (eds.), Springer (to appear).
  • [4] H. Farkas, I. Mudri, Shape-preserving time-dependences in heat conduction, Acta Phys. Hungar. 55 (1984), 267-273.
  • [5] P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomath. 28, Springer, Berlin, 1979.
  • [6] J. Guckenheimer, Ph. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci. 42, Springer, New York, 1983.
  • [7] S. Janeczko, I. Stewart, Symplectic singularities and optical diffraction, in: Singularity Theory and its Applications, Part II, M. Roberts and I. Stewart (eds.), Lecture Notes in Math. 1463, Springer, Berlin, 1991, 220-255.
  • [8] A. Lázár, H. D. Försterling, H. Farkas, P. L. Simon, A. Volford, Z. Noszticzius, Waves of excitations on nonuniform membrane rings, caustics, and reverse involutes, Chaos 7 (1997), 731-737.
  • [9] A. Lázár, Z. Noszticzius, H. Farkas, H. D. Försterling, Involutes: the geometry of chemical waves rotating in annular membranes, Chaos 5 (1995), 443-447.
  • [10] J. D. Murray, Mathematical Biology, Biomathematics 19, Springer, Berlin, 1989.
  • [11] Z. Noszticzius, W. Horsthemke, W. D. McCormick, H. L. Swinney, W. Y. Tam, Sustained chemical waves in an annular gel reactor: a chemical pinwheel, Nature 329 (1987), 619-620.
  • [12] J. Sainhas, R. Dilão, Wave optics in reaction-diffusion systems, Phys. Rev. Lett. 80 (1998), 5216-5219.
  • [13] S. K. Scott, Oscillations, Waves and Chaos in Chemical Kinetics, Oxford University Press, Oxford, 1994.
  • [14] S. Sieniutycz, H. Farkas, Chemical waves in confined regions by Hamilton-Jacobi-Bellman theory, Chemical Engineering Science 52 (1997), 2927-2945.
  • [15] P. L. Simon, H. Farkas, Geometric theory of trigger waves. A dynamical system approach, J. Math. Chem. 19 (1996), 301-315.
  • [16] N. Wiener, A. Rosenblueth, The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle, Arch. Inst. Cardiol. México 16 (1946), 205-265.

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-bcpv50z1p305bwm