ArticleOriginal scientific text

Title

Properties of Conflict Sets in the Plane

Authors 1

Affiliations

  1. Mathematisch Instituut, Universiteit Utrecht, Postbus 80.010, 3508 TA Utrecht, The Netherlands

Abstract

This paper studies the smoothness and the curvature of conflict sets of the distance function in the plane. Conflict sets are also well known as 'bisectors'. We prove smoothness in the case of two convex sets and give a formula for the curvature. We generalize moreover to weighted distance functions, the so-called Johnson-Mehl model.

Bibliography

  1. [Be] M. Berger, Geometry I and II, Universitext, Springer, Berlin, 1987.
  2. [BG] J. W. Bruce, P. J. Giblin, Curves and Singularities, Cambridge Univ. Press, Cambridge, 1984.
  3. [Cox] H. S. M. Coxeter, Introduction to Geometry, Wiley, New York, 1961.
  4. [Go] A. Goddijn, Smoothness Properties of Conflict Sets (in Dutch), Nascholingscursus Achtergronden van de Meetkunde, Utrecht, 1997 (translation in preparation).
  5. [Ma] M. van Manen, Thesis Project on Conflict Sets (in progress), Utrecht University.
  6. [Mi] J. Milnor, Morse Theory, Ann. of Math. Stud. 51, Princeton Univ. Press, Princeton, 1963.
  7. [Ok] A. Okabe, B. Boots, K. Sugihara, Spatial Tesselations: Concepts and Applications of Voronoi Diagrams, Wiley Ser. Probab. Math. Statist. Appl. Probab. Statist., Wiley, Chichester, 1992.
  8. [Po] I. R. Porteous, Geometric Differentiation for the Intelligence of Curves and Surfaces, Cambridge Univ. Press, Cambridge, 1994.
  9. [SSG] J. Sotomayor, D. Siersma, R. Garcia, Curvatures of conflict surfaces in Euclidean 3-space, this volume.
Pages:
267-276
Main language of publication
English
Published
1999
Exact and natural sciences