ArticleOriginal scientific text

Title

Bifurcations of affine invariants for one-parameter family of generic convex plane curves

Authors 1

Affiliations

  1. Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

Abstract

We study affine invariants of plane curves from the view point of the singularity theory of smooth functions. We describe how affine vertices and affine inflexions are created and destroyed.

Bibliography

  1. V. I. Arnol'd, Wave front evolution and equivariant Morse lemma, Comm. Pure Appl. Math. 29 (1976), 557-582.
  2. W. Blaschke, Vorlesungen über Differentialgeometrie II, Springer, Berlin, 1923.
  3. J. W. Bruce, Isotopies of generic plane curves, Glasgow Math. J. 24 (1983), 195-206.
  4. J. W. Bruce and P. J. Giblin, Curves and Singularities. A Geometrical Introduction to Singularity Theory, Cambridge Univ. Press, Cambridge, 1984.
  5. D. L. Fidal, The existence of sextactic points, Math. Proc. Cambridge Philos. Soc. 96 (1984), 433-436.
  6. D. L. Fidal and P. J. Giblin, Generic 1-parameter families of caustics by reflexion in the plane, Math. Proc. Cambridge Philos. Soc. 96 (1984), 425-432.
  7. C. G. Gibson, Singular Points of Smooth Mappings, Pitman Research Notes in Mathematics 25, Pitman Publ., London, 1979.
  8. S. Izumiya and T. Sano, Generic affine differential geometry of plane curves, Proc. Edinburgh Math. Soc. (2) 41 (1998), 315-324.
  9. K. Nomizu and T. Sasaki, Affine Differential Geometry. Geometry of Affine Immersions, Cambridge Tracts in Math. 111, Cambridge Univ. Press, Cambridge, 1994.
Pages:
227-236
Main language of publication
English
Published
1999
Exact and natural sciences