Institute of Mathematics, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland
Bibliografia
[Ar] V. I. Arnol'd, On a characteristic class entering in the quantization conditions (in Russian), Funktsional. Anal. i Prilozhen. 1 (1967), 1-14.
[Bor] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupe de Lie compacts, Ann. of Math. (2) 57 (1953), 115-207.
[Fu] D. B. Fuks, Maslov-Arnol'd characteristic classes (in Russian), Dokl. Akad. Nauk SSSR 178 (1968), 303-306; English transl.: Soviet Math. Dokl. 9 (1968), 96-99.
[GS] V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, Cambridge Univ. Press, Cambridge, 1984.
[Ja1] S. Janeczko, On isotropic submanifolds and evolution of quasicaustics, Pacific J. Math. 158 (1993), 317-334.
[Ja2] S. Janeczko, Coisotropic varieties and their generating families, Ann. Inst. H. Poincaré Phys. Théor. 56 (1992), 429-441.
[Mas] V. P. Maslov, Theory of Perturbation and Asymptotic Methods (in Russian), Izdat. Moskovskogo Gos. Univ., Moscow, 1965.
[Mik] M. Mikosz, On classification of the linear Lagrangian and isotropic subspaces, Demonstratio Math. 30 (1997), 437-450.
[MSS] A. S. Mishchenko, V. E. Shatalov, B. Yu. Sternin, Lagrangian Manifolds and the Method of the Canonical Operator (in Russian), Nauka, Moscow, 1978.
[MN] J. M. Morvan, L. Niglio, Isotropic characteristic classes, Compositio Math. 91 (1994), 67-89.
[Vai] M. I. Vaisman, Symplectic Geometry and Secondary Characteristic Classes, Progr. Math. 72, Birkhäuser, Boston, 1987.
[Wei] A. Weinstein, Lectures on Symplectic Manifolds, CBMS Regional Conf. Ser. in Math. 29, Amer. Math. Soc., Providence, 1977; corrected reprint, 1979.