ArticleOriginal scientific text
Title
On the Nielsen fixed point theory for multivalued mappings
Authors 1
Affiliations
- Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland
Abstract
We present J. Jezierski's approach to the Nielsen fixed point theory for a broad class of multivalued mappings [Je1]. We also describe some generalizations and different techniques existing in the literature.
Bibliography
- [An] J. Andres, Multiple bounded solutions of differential inclusions: The Nielsen theory approach, Preprint (1997).
- [AC] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, 1984.
- [Bro] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman & Co., Glenview Ill., 1971.
- [Do] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1972.
- [Dz1] Z. Dzedzej, Fixed point index theory for a class of non-acyclic multivalued maps, Dissertationes Math. 253 (1985).
- [Dz2] Z. Dzedzej, On Nielsen and Reidemeister relations for set-valued symmetric product maps, CRM Barcelona 76 (1989), 1-8.
- [Gor] L. Górniewicz, Topological approach to differential inclusions, in: Topol. Methods in Diff. Equations and Inclusions, A. Granas and M. Frigon (eds.), NATO ASI 472, 129-190.
- [GGK] L. Górniewicz, A. Granas and W. Kryszewski, On the homotopy method in the fixed point index theory for multivalued mappings of compact ANR's, J. Math. Anal. Appl. 161 (1991), 457-473.
- [Je1] J. Jezierski, The Nielsen relation for multivalued maps, Serdica 13 (1987), 174-181.
- [Je2] J. Jezierski, An example of finitely-valued fixed point free map, Zesz. Nauk. IM UG 6 (1987), 87-93.
- [Jia] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, AMS, Providence, R.I., 1983.
- [KrM] W. Kryszewski and D. Miklaszewski, The Nielsen number of set-valued maps. An approximation approach, Serdica 15 (1989), 336-344.
- [Mas] S. Masih, On the fixed point index and Nielsen fixed point theorem for symmetric product mappings, Fund. Math. 102 (1979), 143-158.
- [Mik] D. Miklaszewski, A reduction of the Nielsen fixed point theorem for symmetric product maps to the Lefschetz theorem, Fund. Math. 135 (1990), 175-176.
- [S1] H. Schirmer, An index and a Nielsen number for n-valued multifunctions, Fund. Math. 124 (1984), 207-219.
- [S2] H. Schirmer, A minimum theorem for n-valued multifunctions, Fund. Math. 126 (1985), 83-92.
- [S3] H. Schirmer, A fixed point index for bimaps, Fund. Math. 134 (1990), 93-104.
- [S4] H. Schirmer, The least number of fixed points of bimaps, Fund. Math. 137 (1991), 1-8.