PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 49 | 1 | 117-135
Tytuł artykułu

Generalized Lefschetz numbers of pushout maps defined on non-connected spaces

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let A, $X_1$ and $X_2$ be topological spaces and let $i_1 : A → X_1$, $i_2: A → X_2$ be continuous maps. For all self-maps $f_A: A → A$, $f_1: X_1 → X_1$ and $f_2: X_2 → X_2$ such that $f_1i_1 = i_1f_A$ and $f_2i_2=i_2f_A$ there exists a pushout map f defined on the pushout space $X_1 ⊔_A X_2$. In [F] we proved a formula relating the generalized Lefschetz numbers of f, $f_A$, $f_1$ and $f_2$. We had to assume all the spaces involved were connected because in the original definition of the generalized Lefschetz number given by Husseini in [H] the space was assumed to be connected. So, to extend the result of [F] to the not necessarily connected case, a definition of generalized Lefschetz number for a map defined on a not necessarily connected space is given; it reduces to the original one when the space is connected and it is still a trace-like quantity. It allows us to prove the pushout formula in this more general case and therefore to get a tool for computing Nielsen and generalized Lefschetz numbers in a wide class of spaces.
Słowa kluczowe
Rocznik
Tom
49
Numer
1
Strony
117-135
Opis fizyczny
Daty
wydano
1999
Twórcy
  • Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133 Milano, Italy
Bibliografia
  • [B] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott Foresman and Company, Chicago, 1971.
  • [FH] E. Fadell and S. Husseini, The Nielsen Number on Surfaces, Contemp. Math. 21, AMS, Providence, 1983.
  • [F] D. Ferrario, Generalized Lefschetz numbers of pushout maps, Topology Appl. 68 (1996) 67-81.
  • [H] S. Y. Husseini, Generalized Lefschetz Numbers, Trans. Amer. Math. Soc. 272 (1982), 247-274.
  • [J] B. J. Jiang, Lectures on Nielsen fixed point theory, Contemp. Math. 14, Amer. Math. Soc., Providence, 1983.
  • [J1] B. J. Jiang, Periodic orbits on surfaces via Nielsen fixed point theory, in: Topology Hawaii (Honolulu, HI, 1990), 101-118.
  • [P] R. A. Piccinini, Lectures on Homotopy Theory, North-Holland, Amsterdam, 1992.
  • [S] J. Stallings, Centerless groups - an algebraic formulation of Gottlieb's theorem, Topology 4 (1965), 129-134.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv49i1p117bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.