Matematiikan laitos, Helsingin yliopisto, PL 4 (Yliopistonkatu 5), FIN-00014 Helsinki, Finland
Bibliografia
[Al] P. Alestalo, Quasisymmetry in product spaces and uniform domains, Licentiate's thesis, University of Helsinki, 1991 (Finnish).
[AG] K. Astala and F. W. Gehring, Injectivity, the BMO norm and the universal Teichmüller space, J. Analyse Math. 46 (1986), 16-57.
[Ben] Y. Benyamini, The uniform classification of Banach spaces, Longhorn notes, University of Texas, 1984-85, 15-39.
[BL] Y. Benyamini and J. Lindenstrauss, Geometric non-linear analysis, book to appear.
[Bes] C. Bessaga, Every infinite-dimensional Hilbert space is diffeomorphic with its unit sphere, Bull. Acad. Polon. Sci. Ser. Sci. Mat. Astr. Phys. 14 (1966), 27-31.
[BP] C. Bessaga and A. Pełczyński, Selected topics in infinite-dimensional topology, Polish Scientific Publishers, 1975.
[BA] A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142.
[CC] M. Cotlar and R. Cignoli, An introduction to functional analysis, North-Holland, 1974.
[DS] D. A. De-Spiller, Equimorphisms and quasi-conformal mappings of the absolute, Soviet Math. Dokl. 11 (1970), 1324-1328.
[ET] V. A. Efremovich and E. S. Tihomirova, Equimorphisms of hyperbolic spaces, Izv. Akad. Nauk SSSR 28 (1964), 1139-1144 (Russian).
[Fe] H. Federer, Geometric measure theory, Springer-Verlag, 1969.
[Ge1] F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353-393.
[Ge2] F. W. Gehring, The Carathéodory convergence theorem for quasiconformal mappings, Ann. Acad. Sci. Fenn. Math. 336/11 (1963), 1-21.
[Ge3] F. W. Gehring, Extension of quasiisometric embeddings of Jordan curves, Complex Variables 5 (1986), 245-263.
[GM] F. W. Gehring and O. Martio, Quasiextremal distance domains and extension of quasiconformal mappings, J. Analyse Math. 45 (1985), 181-206.
[GO] F. W. Gehring and B. G. Osgood, Uniform domains and the quasi-hyperbolic metric, J. Analyse Math. 36 (1979), 50-74.
[GP] F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172-199.
[GV] F. W. Gehring and J. Väisälä, The coefficients of quasiconformality of domains in space, Acta Math. 114 (1965), 1-70.
[Go] S. Gołąb, Quelques problèmes métriques de la géométrie de Minkowski, Prace Akademii Górniczej w Krakowie 6 (1932), 1-79 (Polish, French summary).
[GR] V. M. Goldshtein and M. Rubin, Reconstruction of domains from their groups of quasiconformal autohomeomorphisms, Preprint, 1992.
[HHM] K. Hag, P. Hag and O. Martio, Quasisimilarities; definitions, stability and extension, Rev. Roumaine Math. Pures Appl., to appear.
[HK] J. Heinonen and P. Koskela, Definitions of quasiconformality, Invent. Math. 120 (1995), 61-79.
[JLS] W. B. Johnson, J. Lindenstrauss and G. Schechtman, Banach spaces determined by their uniform structures, Geom. Funct. Anal. 6 (1996), 430-470.
[Jo1] P. W. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), 41-66.
[Jo2] P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), 71-88.
[Kü] R. Kühnau, Elementare Beispiele von möglichst konformen Abbildungen in der dreidimensionalen Raum, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 11 (1962), 729-732.
[Lat] T. G. Latfullin, Criteria to the quasihyperbolicity of maps, Sibirsk. Mat. Zh. 37 (1996), 610-615 (Russian).
[Lau] D. Laugwitz, Konvexe Mittelpunktsbereiche und normierte Räume, Math. Z. 61 (1954), 235-244.
[LV] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, Springer-Verlag, 1973.