PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 48 | 1 | 141-177
Tytuł artykułu

The harmonic and quasiconformal extension operators

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Different aspects of the boundary value problem for quasiconformal mappings and Teichmüller spaces are expressed in a unified form by the use of the trace and extension operators. Moreover, some new results on harmonic and quasiconformal extensions are included.
Rocznik
Tom
48
Numer
1
Strony
141-177
Opis fizyczny
Daty
wydano
1999
Twórcy
  • Institute of Mathematics, The Catholic University of Lublin, Al. Racławickie 14, 20-950 Lublin, Poland
  • Department of Mathematics, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558, Japan
  • Chair of Applied Mathematics, The Catholic University of Lublin, Al. Racławickie 14, 20-950 Lublin, Poland
Bibliografia
  • [AK] S. Agard and J. A. Kelingos, On parametric representation for quasisymmetric functions, Comment. Math. Helv. 44 (1969), 446-456.
  • [AH1] J. M. Anderson and A. Hinkkanen, Quasiconformal self-mappings with smooth boundary values, Bull. London Math. Soc. 26 (1994), 549-556.
  • [AH2] J. M. Anderson and A. Hinkkanen, Quadrilaterals and extremal quasiconformal extensions, Comment. Math. Helv. 70, 1995, 455-474.
  • [Ah] L. V. Ahlfors, Lectures on Quasiconformal Mappings, D. Van Nostrand, Princeton, 1966.
  • [AVV] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Distortion function for plane quasiconformal mappings, Israel J. Math. 62, 1988, 1-16.
  • [ABR] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Graduate Texts in Math. 137, Springer, New York, 1992.
  • [BA] A. Beurling and L. V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96, 1956, 125-142.
  • [BH] D. Bshouty and W. Hengartner, Univalent harmonic mappings in the plane, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 48, 1994, 12-42.
  • [Ca] P. Caraman, n-Dimensional Quasiconformal (QCf) Mappings, Editura Academiei, Bucharest, 1974.
  • [Ch] E. W. Chenney, Introduction to approximation theory, McGraw-Hill, New York, 1966.
  • [Co] G. Choquet, Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques, Bull. Sci. Math. (2), 69, 1945, 156-165.
  • [DE] A. Douady and C. J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157, 1986, 23-48.
  • [Ea] C. J. Earle, Conformally natural extension of vector fields from $S^{n-1}$ to $B^n$, Proc. Amer. Math. Soc. 102, 1988, 145-149.
  • [Fe1] R. Fehlmann, Ueber extremale quasikonforme Abbildungen, Comment. Math. Helv. 56, 1981, 558-580.
  • [Fe2] R. Fehlmann, Quasiconformal mappings with free boundary components, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 7, 1982, 337-347.
  • [FS] R. Fehlmann and K. Sakan, On the set of substantial boundary points for extremal quasiconformal mappings, Complex Variables, Theory Appl. 6, 1986, 323-335.
  • [GS] F. Gardiner and D. Sullivan, Symmetric structure on a closed curve, Amer. J. Math. 114, 1992, 683-736.
  • [Ga] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
  • [Ge] F. W. Gehring, Topics in quasiconformal mappings, in: Quasiconformal Space Mappings: a Collection of Surveys 1960-1990, Lecture Notes in Math. 1508, Springer, Berlin, 1992, 20-30.
  • [Go] K. P. Goldberg, A new definition for quasisymmetric functions, Michigan Math. J. 21, 1974, 49-62.
  • [HH] W. K. Hayman and A. Hinkkanen, Distortion estimates for quasisymmetric functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 36/37, 1982/1983, 51-67.
  • [HP] J. Hersch and A. Pfluger, Généralisation du lemme de Schwarz et du principe de la mesure harmonique pour les fonctions pseudo-analytiques, C. R. Acad. Sci. Paris 234, 1952, 43-45.
  • [Hi1] A. Hinkkanen, Uniformly quasisymmetric groups, Proc. London Math. Soc. (3), 51, 1985, 318-338.
  • [Hi2] A. Hinkkanen, The structure of certain quasisymmetric groups, Mem. Amer. Math. Soc. 422 (1986).
  • [Hü] O. Hübner, Remarks on a paper by Ławrynowicz on quasiconformal mappings, Bull. Acad. Polon. Sci. 18 , 1970, 183-186.
  • [KZ] K. Katajamäki and J. Zając, Some remarks on quasisymmetric functions, Bull. Soc. Sci. Lettres, Łódź 15 (141), 1993, 5-13.
  • [Ke] J. A. Kelingos, Boundary correspondence under quasiconformal mappings, Michigan Math. J. 13, 1966, 235-249.
  • [Kn] H. Kneser, Lösung der Aufgabe 41, Jahresber. Deutsch. Math. Verein. 35, 1926, 123-124.
  • [Kr1] J. G. Krzyż, Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 12, 1987, 19-24.
  • [Kr2] J. G. Krzyż, Harmonic analysis and boundary correspondence under quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 14, 1989, 225-242.
  • [Kr3] J. G. Krzyż, Quasisymmetric functions and quasihomographies, Ann. Univ. Mariae Curie-Skłodowska Sect. A 47, 1993, 90-95.
  • [La] R. S. Laugesen, Planar harmonic maps with inner and Blaschke dilatations, J. London Math. Soc. (to appear).
  • [LP] A. Lecko and D. Partyka, An alternative proof of a result due to Douady and Earle, Ann. Univ. Mariae Curie-Skłodowska, Sec. A 42, 1988, 59-68.
  • [Ln1] M. Lehtinen, A real-analytic quasiconformal extension of the Beurling-Ahlfors extension, Ann. Acad. Sci. Fenn. 3, 1977, 207-213.
  • [Ln2] M. Lehtinen, Remarks on the maximal dilatation of the Beurling-Ahlfors extension, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9, 1984, 133-139.
  • [Le] O. Lehto, Univalent Functions and Teichmüller Spaces, Graduate Texts in Math. 109, Springer, New York, 1987
  • [LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Grundlehren 126, 2nd., Springer, Berlin, 1973.
  • [LVV] O. Lehto, K. I. Virtanen and J. Väisälä, Contributions to the distortion theory of quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 273, 1959, 1-14.
  • [Ł] K ] J. Ławrynowicz and J. G. Krzyż, Quasiconformal Mappings in the Plane: Parametrical Methods, Lecture Notes in Math. 978, Springer, Berlin, 1983.
  • [Ma] O. Martio, On harmonic quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 425, 1968, 1-9.
  • [Pa1] D. Partyka, The maximal dilatation of Douady and Earle extension of a quasisymmetric automorphism of the unit circle, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 44, 1990, 45-57.
  • [Pa2] D. Partyka, A distortion theorem for quasiconformal automorphisms of the unit disk, Ann. Polon. Math. 55, 1991, 277-281.
  • [Pa3] D. Partyka, Approximation of the Hersch-Pfluger distortion function. Applications, Ann. Univ. Mariae Curie-Skłodowska, Sec. A 45, 1992, 99-111.
  • [Pa4] D. Partyka, Approximation of the Hersch-Pfluger distortion function, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 18, 1993, 343-354.
  • [Pa5] D. Partyka, On the maximal dilatation of the Douady-Earle extension, Ann. Univ. Mariae Curie-Skłodowska, Sec. A 48, 1994, 80-97.
  • [Pa6] D. Partyka, The maximal value of the function $[0,1] ∋ r ↦ 𝛷_K^2(r)-r$, Bull. Soc. Sci. Lettres Łódź 45, 1995, 49-55, Série: Recherches sur les déformations, Vol. 20.
  • [Pa7] D. Partyka, The generalized Neumann-Poincaré operator and its spectrum, Dissertationes Math. 366 (1997).
  • [PS1] D. Partyka and K. Sakan, A note on non-quasiconformal harmonic extensions, Bull. Soc. Sci. Lettres Łódź 47, 1997, 51-63, Série: Recherches sur les déformations, Vol. 23.
  • [PS2] D. Partyka and K. Sakan, Quasiconformality of harmonic extensions, submitted for publication.
  • [PZ1] D. Partyka and J. Zając, An estimate of the integral of quasisymmetric functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 40, 1986, 171-183.
  • [PZ2] D. Partyka and J. Zając, On modification of the Beurling-Ahlfors extension of a quasisymmetric function, Bull. Soc. Sci. Lettres Łódź 40, 1990, 45-52, Série: Recherches sur les déformations, Vol. 15.
  • [Ra] T. Radó, Aufgabe 41, Jahresber Deutsch. Math.-Verein. 35, 1926, 49.
  • [Re] E. Reich, A quasiconformal extension using the parametric representation, J. Analyse Math. 54, 1990, 246-258.
  • [RC] E. Reich and J. Chen, Extensions with bounded $\bar∂$-derivative, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 16, 1991, 377-389.
  • [RZ1] L. Resendis and J. Zając, Area and linear distortion theorems for quasiconformal mappings, Bull. Soc. Sci. Lettres Łódź 45, 1995, 51-59, Série: Recherches sur les déformations Vol. 20.
  • [RZ2] L. Resendis and J. Zając, The Buerling-Ahlfors extension of quasihomographies, Comm. Math. Univ. S. Pauli 46, 1997, 133-174.
  • [SZ] K. Sakan and J. Zając, The Douady-Earle extension of quasihomographies, Topics in Complex Analysis, Banach Center Publications, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 37, 1996, 43-51.
  • [Tu1] P. Tukia, On infinite dimensional Teichmüller spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 3, 1977, 343-372.
  • [Tu2] P. Tukia, Extension of quasisymmetry and Lipschitz embedding of the real line into the plane, Ann. Acad. Sci. Fenn. Ser. A I Math. 6, 1981, 89-94.
  • [Tu3] P. Tukia, Hausdorff dimension and quasisymmetric mappings, Math. Scand. 65, 1989, 152-160.
  • [Vä1] J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math., 229, Springer, Berlin, 1971.
  • [Vä2] J. Väisälä, Free quasiconformality in Banach space, Ann. Acad. Sci. Fenn. Ser. A I Math. 15, 1990, 355-379.
  • [VV] M. K. Vamanamurthy and M. Vuorinen, Functional inequalities, Jacobi products, and quasiconformal maps, Preprint, 1992.
  • [Ya] S. Yang, Harmonic extensions and extremal quasiconformal extensions, Hunan Univ. J. (to appear).
  • [Za1] J. Zając, A new definition of quasisymmetric functions, Mat. Vesnik 40, 1988, 361-365.
  • [Za2] J. Zając, Quasisymmetric functions and quasihomographies of the unit circle, Ann. Univ. Mariae Curie-Skłodowska Sect. A 44, 1990, 83-95.
  • [Za3] J. Zając, Distortion function and quasisymmetric mappings, Ann. Polon. Math. 55, 1991, 361-369.
  • [Za4] J. Zając, Quasihomographies and the universal Teichmüller space I, Bull. Soc. Sci. Lettres, Łódź 14 (133), 1992, 21-37.
  • [Za5] J. Zając, Quasihomographies and the universal Teichmüller space II, Bull. Soc. Sci. Lettres, Łódź 18 (137), 1992, 71-92.
  • [Za6] J. Zając, The distortion function $𝛷_K$ and quasihomographies, Current topics of analytic function theory, 1992, 403-428.
  • [Za7] J. Zając, Functional identities for special functions of quasiconformal theory, Ann. Acad. Sci. Fenn. Ser. A I Math. 18, 1993, 93-103.
  • [Za8] J. Zając, The boundary correspondence under quasiconformal automorphisms of a Jordan domain, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45, 1991, 131-140.
  • [Za9] J. Zając, The universal Teichmüller space of an oriented Jordan curve, Ann. Univ. Mariae Curie-Skłodowska Sect. A 47, 1993, 151-163.
  • [Za10] J. Zając, Quasihomographies in the theory of Teichmüller spaces, Dissertationes Math. 357 (1996).
  • [Za11] J. Zając, Harmonic cross-ratio in the theory of one and two dimensional quasiconformal mappings, Proc. of the XVI R. Nevanlinna Coll., de Gruyter, Berlin-New York, 321-333.
  • [ZZ] J. Zając and J. Zając (Jr.), Basic properties of the distance function $M_K$ and its extremum, Folia Sci. Univ. Tech. Resoviensis 147, 1996, 157-163.
  • [Zh] L. Zhong, The lower bound of the maximal dilatation of the Beurling-Ahlfors extension, Ann. Acad. Sci. Fenn. Ser. A I Math. 15, 1990, 75-81.
  • [Zy] A. Zygmund, Smooth functions, Duke Math. J. 12, 1945, 47-76.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv48i1p141bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.