PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 48 | 1 | 119-140
Tytuł artykułu

Nonlinear analysis and quasiconformal mappings from the perspective of PDEs

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Contents Introduction 119 1. Quasiregular mappings 120 2. The Beltrami equation 121 3. The Beltrami-Dirac equation 122 4. A quest for compactness 124 5. Sharp $L^p$-estimates versus variational integrals 125 6. Very weak solutions 128 7. Nonlinear commutators 129 8. Jacobians and wedge products 131 9. Degree formulas 134 References 136
Słowa kluczowe
Rocznik
Tom
48
Numer
1
Strony
119-140
Opis fizyczny
Daty
wydano
1999
Twórcy
  • Department of Mathematics, Syracuse University, Syracuse, New York 13244, U.S.A.
Bibliografia
  • [A] S. S. Antman, Fundamental Mathematical Problems in the Theory of Nonlinear Elasticity, North-Holland, (1976), 33-54.
  • [AD] J.J. Alibert and B. Dacorogna, An example of a quasiconvex function that is not polyconvex in two dimensions, Arch. Rat. Mech. Anal. 117 (1992), 155-166.
  • [As] K. Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), 37-60.
  • [B] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal. 63 (1977), 337-403.
  • [Ba] Z. M. Balogh, Jacobians in Sobolev spaces, preprint.
  • [Bo] B. Bojarski, Generalized solutions of a system of differential equations of first order and elliptic type with discontinuous coeffieients, Mat. Sbornik 43 (1957), 451-503.
  • [Be] F. Bethuel, The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (1991), 153-206.
  • [BG] L. Boccardo and T. Gallouet, Non linear elliptic and parabolic equations involving measure data, Jour. Func. Anal. 87 (1989), 149-169.
  • [BBH] F. Bethuel, H. Brezis and F. Helein, Ginzburg-Landau Vortices, Birkhäuser, 19.
  • [BK] D. Burago and B. Kleiner, Separated nets in Euclidean space and Jacobians of bi-Lipschitz maps, Geom. Funct. Anal. 8 (1998), 273-282.
  • [BL] R. Bañuelos and A. Lindeman, A martingale study of the Beurling-Ahlfors transform in $R^n$, Journal of Funct. Anal. 145 (1997), 224-265.
  • [BI] B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in $R^n$, Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 257-324.
  • [BM-S] A. Baernstein and S. J. Montgomery-Smith, Some conjectures about integral means of ∂f and $\overline∂f$, preprint.
  • [BN1] H. Brezis and L. Nirenberg, Degree theory and BMO. Part I: Compact manifolds without boundaries, Selecta Math. 1 (1995), 197-263.
  • [BN2] H. Brezis and L. Nirenberg, Degree theory and BMO. Part II: Manifolds with boundaries, Selecta Math. 2 (1996), 309-368.
  • [BIS] L. Budney, T. Iwaniec and B. Stroffolini, Removability of singularities of A-harmonic functions, Differential and Integral Equations 12 (1999), 261-274.
  • [Bu] D. Burkholder, Sharp inequalities for martingales and stochastic integrals, Astérisque 157-158, (1988), 75-94.
  • [BW] R. Bañuelos and G. Wang, Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms, Duke Math. J. 80 (1995), 575-600.
  • [CG] R. Coifman and L. Grafakos, Hardy space estimates for multilinear operators I, Revista Matematica Iberoamericana 8 (1992), 45-67.
  • [CJMR] M. Cwikel, B. Jawerth, M. Milman and R. Rochberg, Differential estimates and commutators in interpolation theory, London Math. Soc. Lecture Notes 138 (1989), 170-220.
  • [CLMS] R. R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), 247-286.
  • [Da] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin 1989.
  • [D] G. David, Solutions de l'équation de Beltrami avec $|μ|_∞=1$, Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), 25-70.
  • [DM] B. Dacorogna and J. Moser, On a partial differential equation involving the Jacobian determinant, Ann. I.H.P. Analyse Non Linéaire 7 (1990), 1-26.
  • [DHM 1] G. Dolzmann, N. Hungerbühler and S. Müller, Non-linear elliptic systems with measure-valued right hand side, Math. Z. 226 (1997), 545-574.
  • [DHM 2] G. Dolzmann, N. Hungerbühler and S. Müller, The p-harmonic system with measure-valued right hand side, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), 353-364.
  • [DS] S. K. Donaldson and D. B. Sullivan, Quasiconformal 4-manifolds, Acta Math. 163 (1989), 181-252.
  • [EH] A. Eremenko and D. Hamilton, On the area distortion by quasiconformal mappings, Proc. Amer. Math. Soc. 123 (1995), 2793-2797.
  • [EM] L. C. Evans and S. Müller, Hardy spaces and the two-dimensional Euler equations with nonegative vorticity, J. Amer. Math. Soc. 7 (1994), 199-219.
  • [EsM] M. J. Esteban and S. Müller, Sobolev maps with integer degree and applications to Skyrme's problem, Proc. Roy. Soc. London 436 A (1992), 197-201.
  • [G] L. Greco, A remark on the equality det Df=Det Df, Diff. Int. Eq. 6 (1993), 1089-1100.
  • [Ge] F. W. Gehring, The $L^p$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265-277.
  • [GI] F. W. Gehring and T. Iwaniec, The limit of mappings with finite distortion, Ann. Acad. Sci. Fenn. 24 (1999), to appear.
  • [GIM] L. Greco, T. Iwaniec and G. Moscariello, Limits of the improved integrability of the volume forms, Indiana University Math. J. 44 (1995), 305-339.
  • [GIS] L. Greco, T. Iwaniec and C. Sbordone, Inverting the p-harmonic operator, Manuscripta Mathematica 92 (1997), 249-258.
  • [GISS] L. Greco, T. Iwaniec, C. Sbordone and B. Stroffolini, Degree formulas for maps with nonintegrable Jacobian, Topological Methods in Nonlinear Analysis 6 (1995), 81-95.
  • [GMS] J. M. Giaquinta, G. Modica and J. Souček, Remarks on the degree theory, J. Funct. Anal. 125 (1994), 172-200.
  • [HKM] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford 1993.
  • [HK] J. Heinonen and P. Koskela, Sobolev mappings with integrable dilatation, Arch. Rat. Mech. Anal. 125 (1993), 81-97.
  • [H] A. Hinkkanen, Uniformly quasiregular semigroups in two dimensions, Ann. Acad. Sci. Fenn. Math. 21 (1996), 205-222.
  • [I 1] T. Iwaniec, p-harmonic tensors and quasiregular mappings, Ann. of Math. 136, (1992) 589-624.
  • [I 2] T. Iwaniec, Integrability theory of the Jacobians, Lipschitz Lectures, preprint No. 36, Sonderforschungsbereich 256, Bonn 1995, pp. 1-68.
  • [I 3] T. Iwaniec, Current advances in quasiconformal geometry and nonlinear analysis, Proceedings of the XVIth Rolf Nevanlinna Colloquium, Eds.: Laine/Martio, Walter de Gruyter & Co. (1996), pp. 59-80.
  • [I 4] T. Iwaniec, The failure of lower semicontinuity for the linear dilatation, Bull. London Mathematical Society 30 (1998), 55-61.
  • [I 5] T. Iwaniec, Nonlinear commutators and Jacobians, Lectures in El Escorial (Spain, 1996), special issue of the Journal of Fourier Analysis and Applications dedicated to Miguel de Guzman, Vol. 3 (1997), 775-796.
  • [I 6] T. Iwaniec, Nonlinear Cauchy-Riemann operators in $ℝ^n$, Proc. AMS, to appear.
  • [IL 1] T. Iwaniec and A. Lutoborski, Integral estimates for null Lagrangians, Arch. Rat. Mech. Anal. 125 (1993), 25-79.
  • [IL 2] T. Iwaniec and A. Lutoborski, Polyconvex functionals for nearly conformal deformations, SIAM J. Math. Anal., Vol. 27, No. 3 (1996), pp. 609-619.
  • [IM 1] T. Iwaniec and G. Martin, Quasiconformal mappings in even dimensions, Acta Math. 170 (1993), 29-81.
  • [IM 2] T. Iwaniec and G. Martin, Riesz transforms and related singular integrals, J. reine angew. Math. 473 (1996), 25-57.
  • [IMNS] T. Iwaniec, L. Migliaccio, L. Nania and C. Sbordone, Integrability and removability results for quasiregular mappings in high dimensions, Math. Scand. 75 (1994), 263-279.
  • [IMS] T. Iwaniec, M. Mitrea and C. Scott, Boundary value estimates for harmonic forms, Proc. Amer. Math. Soc. 124 (1996), pp. 1467-1471.
  • [ISS] T. Iwaniec, C. Scott and B. Stroffolini, Nonlinear Hodge theory on manifolds with boundary, Annali di Matematica pura ed Applicata, to appear.
  • [IŠ] T. Iwaniec and V. Šverak, On mappings with integrable dilatation, Proc. Amer. Math. Soc. 118 (1993), 181-188.
  • [IS 1] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Rat. Mech. Anal. 119 (1992), 129-143.
  • [IS 2] T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143-161.
  • [IS 3] T. Iwaniec and C. Sbordone, Riesz transforms and elliptic PDEs with VMO-coefficients, Journal d'Analyse Mathématique 74 (1998), 183-212.
  • [IV 1] T. Iwaniec and A. Verde, A study of Jacobians in Hardy-Orlicz spaces, Proc. Royal Soc. Edinburgh (1999).
  • [IV 2] T. Iwaniec and A. Verde, Note on the operator 𝓛(f)=f log|f|, submitted to the Journal of Functional Analysis.
  • [Ka1] N. J. Kalton, Differential methods in interpolation theory, notes of the lectures at the University of Arkansas, April 10-13, 1996.
  • [Ka2] N. J. Kalton, Nonlinear commutators in interpolation theory, Memoirs AMS 385, vol. 73, (1988), 1-85.
  • [K] T. Kilpeläinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa 19 (1992), 591-613.
  • [L] J. Lewis, On very weak solutions of certain elliptic systems, Comm. Partial Differential Equations 18 (1993), 1515-1537.
  • [Li] A. Lindeman, Martingales and the n-dimensional Beurling-Ahlfors transform, preprint (1996).
  • [LM] H. B. Lawson and M. L. Michelson, Spin Geometry, Princeton Univ. Press, Princeton, 1989.
  • [McM] C. T. McMullen, Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal. 8 (1998), 304-314.
  • [Mi] M. Milman, Higher order commutator in the real method of interpolation, Journal D'Analyse Math. 66 (1995), 37-56.
  • [M] J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286-294.
  • [MR] M. Milman and R. Rochberg, The role of cancellation in interpolation theory, Contemporary Math. 189 (1995), 403-410.
  • [MS] M. Milman and T. Schonbek, A note on second order estimates in interpolation theory and applications, Proc. AMS 110 (1990), 961-969.
  • [Mu1] F. Murat, Compacité par compensations, Ann. Sc. Norm. Sup. Pisa 5 (1978), 489-507.
  • [Mu2] F. Murat, Soluciones renormalizades de EDP elipticas no linear, Publications du Laboratoire d'Analyse Numerique, Paris (1993).
  • [Ma] J. Manfredi, Quasiregular mappings from the multilinear point of view, Ber. University, Jyväskylä Math. Inst. 68 (1995), 55-94.
  • [MV] J. Manfredi and E. Villamor, Mappings with integrable dilatation in higher dimensions, Bull. Amer. Math. Soc. 32 (1995), 235-240.
  • [Mü] S. Müller, A surprising higher integrability property of mappings with positive determinant, Bull. Amer. Math. Soc. 21 (1989), 245-248.
  • [R] H. M. Reimann, Harmonische Funktionen und Jacobi-Determinanten von Diffeomorphismen, Comment. Math. Helv. 47 (1972), 397-408.
  • [RRT] J. W. Robbin, R. C. Roger and B. Temple, On weak continuity and the Hodge decomposition, Trans. AMS 303 (1987), 609-618.
  • [RY] T. Rivere and D. Ye, Resolutions of the prescribed volume form equation, Nonlinear Differential Equations Appl. 3 (1996), 323-369..
  • [Ri] S. Rickman, Quasiregular Mappings, Springer-Verlag, Berlin 1993.
  • [Re 1] Y. G. Reshetnyak, On extremal properties of mappings with bounded distortion, Sibirsk. Mat. Z. 10 (1969), 1300-1310 (Russian).
  • [Re 2] Y.G. Reshetnyak, Space Mappings with Bounded Distortion, Trans. Math. Monographs 73, Amer. Math. Soc., 1989.
  • [Ro] R. Rochberg, Higher order estimates in complex interpolation theory, Pacific J. Math. 174 (1996), 247-267.
  • [RW] R. Rochberg and G. Weiss, Derivatives of analytic families of Banach spaces, Ann. of Math. 118 (1983), 315-347.
  • [S] E. M. Stein, Note on the class LlogL, Studia Math. 32 (1969), 305-310.
  • [Sc] C. Scott, $L^p$-theory of differential forms on manifolds, Trans. Amer. Math. Soc. 347 (1995), 2075-2096.
  • [Se] S. Semmes, A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller, Commun. in PDEs 19 (1994), 277-319.
  • [Š] V. Šverak, Rank-one convexity does not imply quasiconvexity, Proc. Royal Soc. Edinburgh 120A (1992), 185-189.
  • [Ta] L. Tartar, Compensated compactness and applications to partial differential equations in Nonlinear Analysis and Mechanics, Heriotwatt Symposium IV, Research Notes in Mathematics, R. J. Knops (ed.), vol. 39, Pitman, London, (1979), 136-212.
  • [T 1] P. Tukia, On quasiconformal groups, J. Analyse Math. 46 (1986), 318-346.
  • [T 2] P. Tukia, Compactness properties of μ-homeomorphisms, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991) 47-69.
  • [V 1] J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Mathematics, 229, Springer-Verlag, 1971.
  • [V 2] J. Väisälä, Questions on quasiconformal maps in space, in: Quasiconformal Mappings and Analysis, Springer, New York, 1998, 369-374.
  • [VG] S. K. Vodop'yanov and V. M. Goldstein, Quasiconformal mappings and spaces of functions with generalized first derivatives, Sibirsk. Mat. Z. 17 (1976), 515-531 (Russian).
  • [Vu] M. Vuorinen (ed.), Quasiconformal Space Mappings, A collection of Surveys 1960-1990 (Lecture Notes in Math. 1508), Springer-Verlag, Berlin 1992.
  • [W] W. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), 318-344.
  • [Ye] D. Ye, Prescribing the Jacobian determinant in Sobolev spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 275-296.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv48i1p119bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.