ArticleOriginal scientific text

Title

Periodic segments and Nielsen numbers

Authors 1

Affiliations

  1. Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Abstract

We prove that the Poincaré map φ(0,T) has at least N(h~,cl(W0 W0-)) fixed points (whose trajectories are contained inside the segment W) where the homeomorphism h~ is given by the segment W.

Bibliography

  1. P. Boyland, Topological methods in surface dynamics, Topol. Appl. 58 (1994), 223-298.
  2. R. F. Brown, On the Nielsen fixed point theorem for compact maps, Duke Math. J. 36 (1969), 699-708.
  3. B. Jiang, Lectures on Nielsen Fixed point Theory, Contemp. Math. vol. 14, AMS Providence, 1983.
  4. B. Jiang, Nielsen theory for periodic orbits and applications to dynamical systems, Contemp. Math. vol. 152, 183-202, AMS Providence 1993
  5. H. Schirmer, On the location of fixed point sets of pairs of spaces, Topol. and its Appl. 30 (1988), 253-266.
  6. H. Schirmer, A relative Nielsen number, Pacific J. Math. 122 (1986), 65-72.
  7. H. Schirmer, A Survey of Relative Nielsen Fixed Point Theory, Contemp. Math. vol. 152, 291-309, AMS Providence 1993.
  8. C.C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. no 38, AMS, Providence R.I., 1978,
  9. R. Srzednicki, Periodic and bounded solutions in block for time-periodic nonautonomous ordinary differential equations, Nonlinear Anal. Theory Meth. Appl. 22 no 6 (1994), 707-737,
  10. R. Srzednicki, On periodic solutions of planar differential equations with periodic coefficients, J. Diff. Equat. 114 (1994), 77-100,
  11. R. Srzednicki and K. Wójcik, A Geometric Method for Detecting Chaotic Dynamics, J. Diff. Equat. Vol. 135, (1997), 66-82.
  12. R. Srzednicki, A Geometric Method for the Periodic Problem in Ordinary Differential Equations, Seminaire D'Analyse Moderne No.22, Eds.: G. Fournier, T. Kaczynski, Université de Sherbrooke 1992.
  13. K. Wójcik, Isolating segments and symbolic dynamics, to appear in Nonlinear Anal. Th. Meth. Appl.
  14. X. Z. Zhao, A relative Nielsen number for the complement, Lecture Notes in Math. vol. 1411, Springer-Verlag, 1989, 189-199.
Pages:
247-252
Main language of publication
English
Published
1999
Exact and natural sciences