Download PDF - Directional transition matrix
ArticleOriginal scientific text
Title
Directional transition matrix
Authors 1, 2, 3
Affiliations
- Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
- School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332, U.S.A.
- Department of Applied Mathematics and Informatics, Faculty of Science and Technology, Ryukoku University, Seta Otsu 520-2194, Japan
Abstract
We present a generalization of topological transition matrices introduced in [6].
Bibliography
- L. Arnold, C. Jones, K. Mischaikow, G. Raugel, Dynamical Systems Montecatini Terme 1994 (ed. R. Johnson), Lecture Notes in Math., Vol. 1609, Springer, 1995.
- C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. in Math., 38, AMS, Providence, 1978.
- R. Franzosa, The connection matrix theory for Morse decompositions, Trans. AMS 311 (1989) 781-803.
- T. Gedeon, H. Kokubu, K. Mischaikow, H. Oka, and J. Reineck, Conley index theory for fast-slow systems, I: One dimensional slow dynamics, to appear in J. Dynam. Diff. Eq.
- H. Kokubu, K. Mischaikow, and H. Oka, Existence of infinitely many connecting orbits in a singularly perturbed ordinary differential equations, Nonlinearity 9 (1996), 1263-1280.
- C. McCord and K. Mischaikow, Connected simple systems, transition matrices and heteroclinic bifurcations, Trans. A.M.S. 333 (1992), 397-422.
- C. McCord and K. Mischaikow, Equivalence of topological and singular transition matrices in the Conley index, Mich. Math. J. 42 (1995), 387-414.
- K. Mischaikow. M. Mrozek and J. Reineck, Singular index pairs, to appear in J. Dynam. Diff. Eq.
- J. Reineck, The connection matrix in Morse-Smale flows, Trans. A.M.S. 322 (1990), 523-545.
- J. Reineck, Connecting orbits in one-parameter families of flows, Ergod. Th. & Dynam. Sys. 8* (1988), 359-374.