ArticleOriginal scientific text

Title

Directional transition matrix

Authors 1, 2, 3

Affiliations

  1. Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
  2. School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332, U.S.A.
  3. Department of Applied Mathematics and Informatics, Faculty of Science and Technology, Ryukoku University, Seta Otsu 520-2194, Japan

Abstract

We present a generalization of topological transition matrices introduced in [6].

Bibliography

  1. L. Arnold, C. Jones, K. Mischaikow, G. Raugel, Dynamical Systems Montecatini Terme 1994 (ed. R. Johnson), Lecture Notes in Math., Vol. 1609, Springer, 1995.
  2. C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. in Math., 38, AMS, Providence, 1978.
  3. R. Franzosa, The connection matrix theory for Morse decompositions, Trans. AMS 311 (1989) 781-803.
  4. T. Gedeon, H. Kokubu, K. Mischaikow, H. Oka, and J. Reineck, Conley index theory for fast-slow systems, I: One dimensional slow dynamics, to appear in J. Dynam. Diff. Eq.
  5. H. Kokubu, K. Mischaikow, and H. Oka, Existence of infinitely many connecting orbits in a singularly perturbed ordinary differential equations, Nonlinearity 9 (1996), 1263-1280.
  6. C. McCord and K. Mischaikow, Connected simple systems, transition matrices and heteroclinic bifurcations, Trans. A.M.S. 333 (1992), 397-422.
  7. C. McCord and K. Mischaikow, Equivalence of topological and singular transition matrices in the Conley index, Mich. Math. J. 42 (1995), 387-414.
  8. K. Mischaikow. M. Mrozek and J. Reineck, Singular index pairs, to appear in J. Dynam. Diff. Eq.
  9. J. Reineck, The connection matrix in Morse-Smale flows, Trans. A.M.S. 322 (1990), 523-545.
  10. J. Reineck, Connecting orbits in one-parameter families of flows, Ergod. Th. & Dynam. Sys. 8* (1988), 359-374.
Pages:
133-144
Main language of publication
English
Published
1999
Exact and natural sciences