Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
125-135
Opis fizyczny
Daty
wydano
1999
Twórcy
autor
- Computer Science Department, Jagiellonian University, Nawojki 11, 30-072 Kraków, Poland
Bibliografia
- [1] S. Burris and R. McKenzie, Decidability and Boolean Representation, Memoirs Amer. Math. Soc., 246(1981).
- [2] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer Verlag 1981.
- [3] S. Burris, R. McKenzie and M. Valeriote, Decidable discriminator varieties from unary varieties, Journal of Symbolic Logic, 56(1991), 1355-1368.
- [4] S. D. Comer, Elementary properties of structures of sections, Bol. Soc. Mat. Mexicana, 19(1974), 78-85.
- [5] A. Ehrenfeucht, Decidability of the theory of one function, Notices Amer. Math. Soc., 6(1959), 268.
- [6] R. Freese and R. McKenzie, Commutator theory for congruence modular varieties, London Math. Soc. Lecture Notes, 125, 1987.
- [7] H. P. Gumm, Geometrical methods in congruence modular varieties, Memoirs Amer. Math. Soc., 289(1983).
- [8] J. Hagemann and C. Herrmann, A concrete ideal multiplication for algebraic systems and its relation to congruence distributivity, Archive der Mathematik, 32(1979), 234-245.
- [9] D. Hobby and R. McKenzie, The Structure of Finite Algebras, Amer. Math. Soc., Contemporary Mathematics Volume 76, Providence, 1988.
- [10] K. Idziak and P. M. Idziak, Decidability problem for finite Heyting algebras, Journal of Symbolic Logic, 53(1988), 729-735.
- [11] P. M. Idziak, Reduced sub-powers and the decision problem for finite algebras in arithmetical varieties, Algebra Universalis, 25(1988), 365-383.
- [12] P. M. Idziak, Varieties with decidable finite algebras I: linearity, Algebra Universalis, 26(1989), 234-246.
- [13] P. M. Idziak, Varieties with decidable finite algebras II: permutability, Algebra Universalis, 26(1989), 247-256.
- [14] P. M. Idziak, Sheaves in universal algebra and model theory, Part I, Reports on Mathematical Logic, 23(1989), 39-65.
- [15] P. M. Idziak, Sheaves in universal algebra and model theory, Part II, Reports on Mathematical Logic, 24(1990), 61-86.
- [16] P. M. Idziak, A characterization of finitely decidable congruence modular varieties, Trans. Amer. Math. Soc., 349(1997), 903-934.
- [17] P. M. Idziak and M. Valeriote, A property of the solvable radical in finitely decidable varieties. manuscript 1992.
- [18] P. M. Idziak and M. Valeriote, The centralizer in finitely decidable varieties. manuscript 1996.
- [19] J. Jeong, On finitely decidable varieties, Ph.D. Thesis, Univ. California, Berkeley, 1991.
- [20] J. Jeong, Finitary decidability implies permutability for congruence modular varieties, Algebra Universalis, 29(1992), 441-448.
- [21] J. Jeong, Finitely decidable congruence modular varieties, Trans. Amer. Math. Soc., 339(1993), 623-642.
- [22] J. Jeong, Type 2 subdirectly irreducible algebras in finitely decidable varieties, Journal of Algebra, 174(1995), 772-793.
- [23] I. A. Lavrov, Effective inseparability of the sets of identically true formulae and finitely refutable formulae for certain elementary theories, (Russian) Algebra i Logika, 2(1963), 5-18.
- [24] R. McKenzie and M. Valeriote, The Structure of Decidable Locally Finite Varieties, Birkhäuser, Boston, 1989.
- [25] F. Point, Problèmes de décidabilité pour les théories de modules, Bull. Soc. Math. Belg. Ser. B, 38(1986), 58-74.
- [26] F. Point, Decidability questions for theories of modules, Proc. of Logic Colloquium '90 (Helsinki, 1990), Lecture Notes in Logic, vol. 2, pp. 266-280, Springer, Berlin, 1993.
- [27] F. Point and M. Prest, Decidability for theories of modules, J. London Math. Soc. (2), 38(1988), 193-206.
- [28] M. Prest, Model theory and modules, London Math. Soc. Lecture Notes, 130, 1988.
- [29] M. Prest, Wild representation type and undecidability, Comm. Algebra, 19(1991), 919-929.
- [30] M. O. Rabin, Decidability of second order theories and automata on infinite trees, Trans. Amer. Math. Soc., 141(1969), 1-35.
- [31] J. D. H. Smith, Malcev Varieties, Lectures Notes in Mathematics, vol.554, Springer Verlag 1976.
- [32] W. Szmielew, Elementary properties of Abelian groups, Fund. Math., 55(1955), 203-271.
- [33] A. Tarski, Arithmetical classes and types of Boolean algebras, Bull. Amer. Math. Soc., 55(1949), 64.
- [34] M. Valeriote, On decidable locally finite varieties, Ph.D. Thesis, Univ. California, Berkeley, 1986
- [35] M. Valeriote, On solvable congruences in finitely decidable varieties, Mathematical Logic Quarterly, 40(1994), 398-414.
- [36] M. Valeriote and R. Willard, Some properties of finitely decidable varieties, International Journal of Algebra and Computation, 2(1992), 89-101.
- [37] M. Valeriote and R. Willard, Discriminating varieties, Algebra Universalis, 32(1994), 177-188.
- [38] H. Werner, Discriminator Algebras, Studien zur Algebra und ihre Anwendungen, Band 6, Akademie-Verlag, Berlin 1978.
- [39] R. Willard, Decidable discriminator varieties from unary classes, Trans. Amer. Math. Soc., 336(1993), 311-333.
- [40] R. Willard, Decidable discriminator varieties with lattice stalks, Algebra Universalis, 31(1994), 177-194.
- [41] R. Willard, Hereditary undecidability of some theories of finite structures, Journal of Symbolic Logic, 59(1994), 1254-1262.
- [42] A. P. Zamyatin, A prevariety of semigroups whose elementary theory is solvable, Algebra and Logic, 12(1973), 233-241.
- [43] A. P. Zamyatin, Varieties of associative rings whose elementary theory is decidable, Soviet Math. Dokl., 17(1976), 996-999.
- [44] A. P. Zamyatin, A non-Abelian variety of groups has an undecidable elementary theory, Algebra and Logic, 17(1978), 13-17.
- [45] A. P. Zamyatin, Prevarieties of associative rings whose elementary theory is decidable, Soviet Math. Dokl., 19(1978), 890-901.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv46i1p125bwm