ArticleOriginal scientific text

Title

Decidability and structure

Authors 1

Affiliations

  1. Computer Science Department, Jagiellonian University, Nawojki 11, 30-072 Kraków, Poland

Bibliography

  1. S. Burris and R. McKenzie, Decidability and Boolean Representation, Memoirs Amer. Math. Soc., 246(1981).
  2. S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer Verlag 1981.
  3. S. Burris, R. McKenzie and M. Valeriote, Decidable discriminator varieties from unary varieties, Journal of Symbolic Logic, 56(1991), 1355-1368.
  4. S. D. Comer, Elementary properties of structures of sections, Bol. Soc. Mat. Mexicana, 19(1974), 78-85.
  5. A. Ehrenfeucht, Decidability of the theory of one function, Notices Amer. Math. Soc., 6(1959), 268.
  6. R. Freese and R. McKenzie, Commutator theory for congruence modular varieties, London Math. Soc. Lecture Notes, 125, 1987.
  7. H. P. Gumm, Geometrical methods in congruence modular varieties, Memoirs Amer. Math. Soc., 289(1983).
  8. J. Hagemann and C. Herrmann, A concrete ideal multiplication for algebraic systems and its relation to congruence distributivity, Archive der Mathematik, 32(1979), 234-245.
  9. D. Hobby and R. McKenzie, The Structure of Finite Algebras, Amer. Math. Soc., Contemporary Mathematics Volume 76, Providence, 1988.
  10. K. Idziak and P. M. Idziak, Decidability problem for finite Heyting algebras, Journal of Symbolic Logic, 53(1988), 729-735.
  11. P. M. Idziak, Reduced sub-powers and the decision problem for finite algebras in arithmetical varieties, Algebra Universalis, 25(1988), 365-383.
  12. P. M. Idziak, Varieties with decidable finite algebras I: linearity, Algebra Universalis, 26(1989), 234-246.
  13. P. M. Idziak, Varieties with decidable finite algebras II: permutability, Algebra Universalis, 26(1989), 247-256.
  14. P. M. Idziak, Sheaves in universal algebra and model theory, Part I, Reports on Mathematical Logic, 23(1989), 39-65.
  15. P. M. Idziak, Sheaves in universal algebra and model theory, Part II, Reports on Mathematical Logic, 24(1990), 61-86.
  16. P. M. Idziak, A characterization of finitely decidable congruence modular varieties, Trans. Amer. Math. Soc., 349(1997), 903-934.
  17. P. M. Idziak and M. Valeriote, A property of the solvable radical in finitely decidable varieties. manuscript 1992.
  18. P. M. Idziak and M. Valeriote, The centralizer in finitely decidable varieties. manuscript 1996.
  19. J. Jeong, On finitely decidable varieties, Ph.D. Thesis, Univ. California, Berkeley, 1991.
  20. J. Jeong, Finitary decidability implies permutability for congruence modular varieties, Algebra Universalis, 29(1992), 441-448.
  21. J. Jeong, Finitely decidable congruence modular varieties, Trans. Amer. Math. Soc., 339(1993), 623-642.
  22. J. Jeong, Type 2 subdirectly irreducible algebras in finitely decidable varieties, Journal of Algebra, 174(1995), 772-793.
  23. I. A. Lavrov, Effective inseparability of the sets of identically true formulae and finitely refutable formulae for certain elementary theories, (Russian) Algebra i Logika, 2(1963), 5-18.
  24. R. McKenzie and M. Valeriote, The Structure of Decidable Locally Finite Varieties, Birkhäuser, Boston, 1989.
  25. F. Point, Problèmes de décidabilité pour les théories de modules, Bull. Soc. Math. Belg. Ser. B, 38(1986), 58-74.
  26. F. Point, Decidability questions for theories of modules, Proc. of Logic Colloquium '90 (Helsinki, 1990), Lecture Notes in Logic, vol. 2, pp. 266-280, Springer, Berlin, 1993.
  27. F. Point and M. Prest, Decidability for theories of modules, J. London Math. Soc. (2), 38(1988), 193-206.
  28. M. Prest, Model theory and modules, London Math. Soc. Lecture Notes, 130, 1988.
  29. M. Prest, Wild representation type and undecidability, Comm. Algebra, 19(1991), 919-929.
  30. M. O. Rabin, Decidability of second order theories and automata on infinite trees, Trans. Amer. Math. Soc., 141(1969), 1-35.
  31. J. D. H. Smith, Malcev Varieties, Lectures Notes in Mathematics, vol.554, Springer Verlag 1976.
  32. W. Szmielew, Elementary properties of Abelian groups, Fund. Math., 55(1955), 203-271.
  33. A. Tarski, Arithmetical classes and types of Boolean algebras, Bull. Amer. Math. Soc., 55(1949), 64.
  34. M. Valeriote, On decidable locally finite varieties, Ph.D. Thesis, Univ. California, Berkeley, 1986
  35. M. Valeriote, On solvable congruences in finitely decidable varieties, Mathematical Logic Quarterly, 40(1994), 398-414.
  36. M. Valeriote and R. Willard, Some properties of finitely decidable varieties, International Journal of Algebra and Computation, 2(1992), 89-101.
  37. M. Valeriote and R. Willard, Discriminating varieties, Algebra Universalis, 32(1994), 177-188.
  38. H. Werner, Discriminator Algebras, Studien zur Algebra und ihre Anwendungen, Band 6, Akademie-Verlag, Berlin 1978.
  39. R. Willard, Decidable discriminator varieties from unary classes, Trans. Amer. Math. Soc., 336(1993), 311-333.
  40. R. Willard, Decidable discriminator varieties with lattice stalks, Algebra Universalis, 31(1994), 177-194.
  41. R. Willard, Hereditary undecidability of some theories of finite structures, Journal of Symbolic Logic, 59(1994), 1254-1262.
  42. A. P. Zamyatin, A prevariety of semigroups whose elementary theory is solvable, Algebra and Logic, 12(1973), 233-241.
  43. A. P. Zamyatin, Varieties of associative rings whose elementary theory is decidable, Soviet Math. Dokl., 17(1976), 996-999.
  44. A. P. Zamyatin, A non-Abelian variety of groups has an undecidable elementary theory, Algebra and Logic, 17(1978), 13-17.
  45. A. P. Zamyatin, Prevarieties of associative rings whose elementary theory is decidable, Soviet Math. Dokl., 19(1978), 890-901.
Pages:
125-135
Main language of publication
English
Published
1999
Exact and natural sciences