ArticleOriginal scientific text
Title
The cohomology algebras of orientable Seifert manifolds and applications to Lusternik-Schnirelmann category
Authors 1, 1
Affiliations
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada
Abstract
This note gives a complete description of the cohomology algebra of any orientable Seifert manifold with ℤ/p coefficients, for an arbitrary prime p. As an application, the existence of a degree one map from an orientable Seifert manifold onto a lens space is completely determined. A second application shows that the Lusternik-Schnirelmann category for a large class of Seifert manifolds is equal to 3, which in turn is used to verify the Ganea conjecture for these Seifert manifolds.
Keywords
cup products, cup product length, Lusternik-Schnirelmann category, degree one maps, diagonal map, Seifert manifolds, cohomology algebra
Bibliography
- J. Bryden, C. Hayat-Legrand, H. Zieschang and P. Zvengrowski, L'anneau de cohomologie d'une variété de Seifert, C. R. Acad. Sci. Paris 324, Sér. I (1997), 323-326.
- J. Bryden, C. Hayat-Legrand, H. Zieschang and P. Zvengrowski, The cohomology ring of a class of Seifert manifolds, Top. and its Appl., to appear.
- J. Bryden and P. Zvengrowski, The cohomology ring of the orientable Seifert manifolds II, preprint.
- S. Eilenberg and T. Ganea, On the Lusternik-Schnirelmann category of abstract groups, Ann. of Math. 65 (1957), 517-518.
- R. H. Fox, Free differential calculus. I. Derivations in the free group ring, Ann. of Math. 57 (1953), 547-560.
- R. H. Fox, On the Lusternik-Schnirelmann category, Ann. of Math. 42 (1941), 333-370.
- C. Hayat-Legrand, S. Wang and H. Zieschang, Degree-one maps onto lens spaces, Pac. J. Math. 176 (1996), 19-32.
- J. Hempel, 3-Manifolds, Annals of Math. Studies, vol. 86, Princeton University Press, Princeton, New Jersey 1976, 115-135.
- N. Iwase, Ganea's conjecture on Lusternik-Schnirelmann category, preprint.
- I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), 331-348.
- S. MacLane, Homology, Springer-Verlag, Berlin, 1963.
- J. M. Montesinos, Classical Tesselations and Three-Manifolds, Springer-Verlag, Berlin, 1987.
- P. Orlik, Seifert Manifolds, Lecture Notes in Math. 291, Springer-Verlag, Berlin, 1972.
- K. Reidemeister, Homotopieringe und Linsenräume, Abh. Math. Sem. Univ. Hamburg 11 (1935), 102-109.
- Y. B. Rudyak, On category weight and its applications, preprint.
- P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 No. 56 (1983), 401-487.
- H. Seifert, Topologie dreidimensionaler gefaserter Räume, Acta Math. 60 (1932), 147-238.
- H. Seifert and W. Threlfall, A Textbook of Topology, Academic Press, 1980.
- A. R. Shastri, J. G. Williams and P. Zvengrowski, Kinks in general relativity, International Journal of Theoretical Physics 19 (1980), 1-23.
- E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
- N. Steenrod and D. B. A. Epstein, Cohomology Operations, The University of Princeton Press, Princeton, N.J., 1962.