ArticleOriginal scientific text

Title

The cohomology algebras of orientable Seifert manifolds and applications to Lusternik-Schnirelmann category

Authors 1, 1

Affiliations

  1. Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada

Abstract

This note gives a complete description of the cohomology algebra of any orientable Seifert manifold with ℤ/p coefficients, for an arbitrary prime p. As an application, the existence of a degree one map from an orientable Seifert manifold onto a lens space is completely determined. A second application shows that the Lusternik-Schnirelmann category for a large class of Seifert manifolds is equal to 3, which in turn is used to verify the Ganea conjecture for these Seifert manifolds.

Keywords

cup products, cup product length, Lusternik-Schnirelmann category, degree one maps, diagonal map, Seifert manifolds, cohomology algebra

Bibliography

  1. J. Bryden, C. Hayat-Legrand, H. Zieschang and P. Zvengrowski, L'anneau de cohomologie d'une variété de Seifert, C. R. Acad. Sci. Paris 324, Sér. I (1997), 323-326.
  2. J. Bryden, C. Hayat-Legrand, H. Zieschang and P. Zvengrowski, The cohomology ring of a class of Seifert manifolds, Top. and its Appl., to appear.
  3. J. Bryden and P. Zvengrowski, The cohomology ring of the orientable Seifert manifolds II, preprint.
  4. S. Eilenberg and T. Ganea, On the Lusternik-Schnirelmann category of abstract groups, Ann. of Math. 65 (1957), 517-518.
  5. R. H. Fox, Free differential calculus. I. Derivations in the free group ring, Ann. of Math. 57 (1953), 547-560.
  6. R. H. Fox, On the Lusternik-Schnirelmann category, Ann. of Math. 42 (1941), 333-370.
  7. C. Hayat-Legrand, S. Wang and H. Zieschang, Degree-one maps onto lens spaces, Pac. J. Math. 176 (1996), 19-32.
  8. J. Hempel, 3-Manifolds, Annals of Math. Studies, vol. 86, Princeton University Press, Princeton, New Jersey 1976, 115-135.
  9. N. Iwase, Ganea's conjecture on Lusternik-Schnirelmann category, preprint.
  10. I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), 331-348.
  11. S. MacLane, Homology, Springer-Verlag, Berlin, 1963.
  12. J. M. Montesinos, Classical Tesselations and Three-Manifolds, Springer-Verlag, Berlin, 1987.
  13. P. Orlik, Seifert Manifolds, Lecture Notes in Math. 291, Springer-Verlag, Berlin, 1972.
  14. K. Reidemeister, Homotopieringe und Linsenräume, Abh. Math. Sem. Univ. Hamburg 11 (1935), 102-109.
  15. Y. B. Rudyak, On category weight and its applications, preprint.
  16. P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 No. 56 (1983), 401-487.
  17. H. Seifert, Topologie dreidimensionaler gefaserter Räume, Acta Math. 60 (1932), 147-238.
  18. H. Seifert and W. Threlfall, A Textbook of Topology, Academic Press, 1980.
  19. A. R. Shastri, J. G. Williams and P. Zvengrowski, Kinks in general relativity, International Journal of Theoretical Physics 19 (1980), 1-23.
  20. E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
  21. N. Steenrod and D. B. A. Epstein, Cohomology Operations, The University of Princeton Press, Princeton, N.J., 1962.
Pages:
25-39
Main language of publication
English
Published
1998
Exact and natural sciences