ArticleOriginal scientific text

Title

Various structures in 8-dimensional vector bundles over 8-manifolds

Authors 1, 2

Affiliations

  1. Department of Algebra and Geometry, Masaryk University, Jan, ' ačkovo n, ' am. 2a, 662 95 Brno, Czech Republic
  2. Academy of Sciences of the Czech Republic, Institute of Mathematics, Žižkova 22, 616 62 Brno, Czech Republic

Abstract

The paper is an overview of our results concerning the existence of various structures, especially complex and quaternionic, in 8-dimensional vector bundles over closed connected smooth 8-manifolds.

Keywords

obstructions, Cayley numbers, principle of triality, vector bundle, characteristic classes, classifying spaces, reduction of the structure group

Bibliography

  1. [AD] M. Atiyah and J. Dupont, Vector fields with finite singularities, Acta Math. 128 (1972), 1-40.
  2. [BH] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.
  3. [Br] C. Brada, Eléments de la géométrie des octaves de Cayley, Thesis, Publications du Département de Mathématiques de l'Université de Lyon I, 2/d-1986.
  4. [CV1] M. Čadek and J. Vanžura, On the classification of oriented vector bundles over 9-complexes, Proceedings of the Winter School Geometry and Physics 1993, Suppl. Rend. Circ. Math. Palermo, Serie II 37 (1994).
  5. [CV2] M. Čadek and J. Vanžura, On 2-distributions in 8-dimensional vector bundles over 8-complexes, Colloq. Math. 70 (1996), 25-40.
  6. [CV3] M. Čadek and J. Vanžura, On Sp(2) and Sp(2)·Sp(1)-structures in 8-dimensional vector bundles, to appear in Publ. Math.
  7. [CV4] M. Čadek and J. Vanžura, Almost quaternionic structures on eight-manifolds, to appear in Osaka J. Math. 35 (1) (1998).
  8. [CV5] M. Čadek and J. Vanžura, On complex structures in 8-dimensional vector bundles, to appear in Manuscripta Math.
  9. [CV6] M. Čadek and J. Vanžura, On 4-fields and 4-distributions in 8-dimensional vector bundles over 8-complexes, Colloq. Math. 76 (1998), 213-228.
  10. [CS] M. C. Crabb and B. Steer, Vector-bundle monomorphisms with finite singularities, Proc. London Math. Soc. (3) 30 (1975), 1-39.
  11. [Du] J. L. Dupont, K-theory obstructions to the existence of vector fields, Acta Math. 113 (1974), 67-80.
  12. [E] C. Ehresmann, Sur les variétés presque complexes, Proceedings of the International Congress of Mathematicians II(1950), 412-419.
  13. [Fr] H. Freudenthal, Octaven Ausnahmegruppen und Oktavengeometrie, Utrecht, 1951.
  14. [GG] A. Gray and P. Green, Sphere transitive structures and the triality automorphism, Pacific J. Math. 34 (1970), 83-96.
  15. [He] T. Heaps, Almost complex structures on eight- and ten-dimensional manifolds, Topology 9 (1970), 111-119.
  16. [Hi] F. Hirzebruch, Komplexe Mannigfaltigkeiten, Proc. International Congress of Mathematicians 1958, Cambridge University Press, 1960, 119-136.
  17. [HH] F. Hirzebruch and H. Hopf, Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958), 156-172.
  18. [K1] U. Koschorke, Vector fields and other vector bundle morphisms - a singularity approach, Lecture Notes in Mathematics 847, Springer-Verlag, 1981.
  19. [K2] U. Koschorke, Nonstable and stable monomorphisms of vector bundles, preprint (1995).
  20. [Po] M. M. Postnikov, Lie Groups and Lie Algebras, Lectures in Geometry, Semester V, translation from Russian, Mir, Moscow, 1986.
  21. [Q] D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, Math. Ann. 194 (1971), 197-212.
  22. [T1] E. Thomas, Complex structures on real vector bundles, Am. J. Math. 89 (1966), 887-908.
  23. [T2] E. Thomas, Vector fields on manifolds, Bulletin Amer. Math. Soc. 75 (1967), 643-683.
  24. [T3] E. Thomas, On the cohomology groups of the classifying space for the stable spinor group, Bol. Soc. Math. Mex. (2) 7 (1962), 57-69.
Pages:
183-197
Main language of publication
English
Published
1998
Exact and natural sciences