ArticleOriginal scientific text
Title
An extension of Miller's version of the de Rham Theorem with any coefficients
Authors 1, 1, 1, 1, 1
Affiliations
- Departamento de Algebra, Geometría y Topología, Universidad de Málaga, Ap. 59, 29080 Málaga, Spain
Abstract
In this paper we present an approximation to the de Rham theorem for simplicial sets with any coefficients based, using simplicial techniques, on Poincaré's lemma and q-extendability.
Keywords
commutative cochain problem, de Rham theorem, simplicial set
Bibliography
- H. Cartan, Théories cohomologiques, Invent. Math. 35 (1976), 261-271.
- B. Cenkl, Cohomology operations from higher products in the de Rham complex, Pacific Journal of Math. 140 1 (1989), 21-33.
- Y. Félix, S. Halperin and J. C. Tomas, Rational Homotopy Theory, Preprint Univ. of Toronto, version 96.2, (1996).
- S. Halperin, Lectures on minimal models, Mémoire de la Soc. Math. de France, 9/10 (1983).
- P. May, Simplicial objects in algebraic topology, Van Nostrand, 1967.
- E. Y. Miller, De Rham cohomology with arbitrary coefficients, Topology 17 (1978), 193-203.
- D. Quillen, Rational homotopy theory, Annals of Math. 90 (1969), 205-295.
- D. Sullivan, Infinitesimal Computations in Topology, Publ. de l'I.H.E.S. 47 (1978), 269-331.
- R. Swan, Thom's theory of differential forms on simplicial sets, Topology 14 (1975). 271-273.