ArticleOriginal scientific text

Title

The geometry of a closed form

Authors 1, 1, 2

Affiliations

  1. Departamento de Matemáticas, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao, Spain
  2. Instituto de Matemáticas y Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain

Abstract

It is proved that a closed r-form ω on a manifold M defines a cohomology (called ω-coeffective) on M. A general algebraic machinery is developed to extract some topological information contained in the ω-coeffective cohomology. The cases of 1-forms, symplectic forms, fundamental 2-forms on almost contact manifolds, fundamental 3-forms on G2-manifolds and fundamental 4-forms in quaternionic manifolds are discussed.

Bibliography

  1. L. C. de Andrés, M. Fernández, M. de León, R. Ibáñez and J. Mencía, On the coeffective cohomology of compact symplectic manifolds, C. R. Acad. Sci. Paris, 318, Série I, (1994), 231-236.
  2. M. Berger, Sur les groupes d'holonomie des variétés à connexion affine et des variétés riemannienes, Bull. Soc. Math. France, 83 (1955), 279-330.
  3. D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, 1976.
  4. E. Bonan, Sur l'algèbre extérieure d'une variété presque hermitienne quaternionique, C. R. Acad. Sci. Paris, 295, Série I (1982), 115-118.
  5. E. Bonan, Isomorphismes sur une variété presque hermitienne quaternionique, in: Proc. of the Meeting on Quaternionic Structures in Math. and Physics, Trieste, SISSA, (1994), pp. 1-6.
  6. T. Bouché, La cohomologie coeffective d'une variété symplectique, Bull. Sci. Math., 114 (2) (1990), 115-122.
  7. G. B. Brown and A. Gray, Vector cross products, Comment. Math. Helv. 42 (1967), 222-236.
  8. F. Cantrijn, L. Ibort and M. de León, On the geometry of multisymplectic manifolds, to appear in Journal of the Australian Mathematical Society.
  9. D. Chinea, M. de León and J. C. Marrero, Topology of cosymplectic manifolds, J. Math. Pures et Appl., 72 (6) (1993), 567-591.
  10. D. Chinea, M. de León and J. C. Marrero, Coeffective cohomology on cosymplectic manifolds, Bull. Sci. Math., 119 (1) (1995), 3-20.
  11. P. Deligne, Ph. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274.
  12. M. Fernández and A. Gray, Riemannian manifolds with structure group G2, Ann. Mat. Pura Appl. (IV) 32 (1982), 19-45.
  13. M. Fernández, R. Ibáñez and M. de León, A Nomizu's theorem for the coeffective cohomology, Math. Z. 226 (1997), 11-23.
  14. M. Fernández, R. Ibáñez and M. de León, The coeffective cohomology for compact symplectic nilmanifolds, in: Proceedings of the III Fall Workshop Differential Geometry and its Applications, Granada, Sept. 26-27, 1994, Anales de Física, Monografías 2, CIEMAT-RSFE, Madrid, 1995, pp. 131-144.
  15. M. Fernández, R. Ibáñez and M. de León, Coeffective and de Rham cohomologies of symplectic manifolds, to appear in J. of Geometry and Physics 491 (1998).
  16. M. Fernández, R. Ibáñez and M. de León, Coeffective and de Rham cohomologies on almost contact manifolds, Differential Geometry and Its Applications 8 (1998), 285-303.
  17. M. Fernández, R. Ibáñez and M. de León, Coeffective cohomology of quaternionic Kähler manifolds, Conference on Differential Geometry, Budapest, July 27-30, 1996.
  18. M. Fernández and L. Ugarte, Dolbeault cohomology for G2-manifolds, Geometriae Dedicata 70 (1998), 57-86.
  19. M. Fernández and L. Ugarte, A differential complex for locally conformal calibrated G2-manifolds, preprint 1996.
  20. Ph. Griffiths and J. Morgan, Rational homotopy theory and differential forms, Progress in Math. 16, Birkhäuser, 1981.
  21. R. Ibáñez, Coeffective-Dolbeault cohomology of compact indefinite Kähler manifolds, Osaka J. Math. 34 (1997), 553-571.
  22. V. Kraines, Topology of quaternionic manifolds, Trans. Amer. Math. Soc. 122 (1966), 357-367.
  23. P. Libermann and Ch. M. Marle, Symplectic geometry and analytical mechanics, Kluwer, Dordrecht, 1987.
  24. G. Lupton and J. Oprea, private communication.
  25. G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure and Appl. Algebra 91 (1994), 193-207.
  26. D. McDuff and D. Salamon, Introduction to symplectic topology, Oxford Math. Monographs, Oxford Univ. Press, 1995.
  27. J. Moser, On the volume elements on manifolds, Trans. Amer. Soc. Math., 120 (1965), 286-295.
  28. K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie group, Annals of Math. 59 (2) (1954), 531-538.
  29. J. A. Oubiña, New classes of almost contact metric structures, Publicationes Mathematicae 32 (3-4) (1985), 187-193.
  30. M. S. Raghunatan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik 68, Springer-Verlag, Berlin, 1972.
  31. R. Reyes, Some special geometries defined by Lie groups, Thesis, Oxford, 1993.
  32. S. Salamon, Riemannian Geometry and Holonomy Groups, Pitman Research Notes in Math. Series 201, Longman, Boston, 1989.
  33. A. Swann, Hyperkähler and quaternionic Kähler geometry, Math. Ann. 289 (1991), 421-450.
  34. A. Tralle and J. Oprea, Symplectic Manifolds with no Kähler Structure, Lecture Notes in Math. 1661, Springer, Berlin, 1997.
  35. I. Vaisman, Locally conformal symplectic manifolds, Internat. J. Math. & Math. Sci. 8 (1985), 3, 521-536.
  36. A. Weinstein, Lectures on symplectic manifolds, CBMS, Amer. Math. Soc. 29, Providence (R.I.), 1977.
Pages:
155-167
Main language of publication
English
Published
1998
Exact and natural sciences