ArticleOriginal scientific text
Title
Dolbeault homotopy theory and compact nilmanifolds
Authors 1, 2, 3, 4
Affiliations
- Departamento de Geometría y Topología, Facultad de Matemáticas, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain
- Departamento de Matemáticas, Facultad de Ciencias, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
- Department of Mathematics, University of Maryland, College Park, Maryland 20742, U.S.A.
- Departamento de Matemáticas (Geometría y Topología), Facultad de Ciencias, Universidad de Zaragoza, Campus Plaza San Francisco, 50009 Zaragoza, Spain
Abstract
In this paper we study the degeneration of both the cohomology and the cohomotopy Frölicher spectral sequences in a special class of complex manifolds, namely the class of compact nilmanifolds endowed with a nilpotent complex structure. Whereas the cohomotopy spectral sequence is always degenerate for such a manifold, there exist many nilpotent complex structures on compact nilmanifolds for which the classical Frölicher spectral sequence does not collapse even at the second term.
Bibliography
- L. C. de Andrés, M. Fernández, A. Gray and J. J. Mencía, Compact manifolds with indefinite Kähler metrics, Proc. VIth Int. Coll. Differential Geometry (Ed. L.A. Cordero), Santiago (Spain) 1988, Cursos y Congresos 61, 25-50, Univ. Santiago de Compostela (Spain) 1989.
- L. C. de Andrés, M. Fernández, A. Gray and J. J. Mencía, Moduli spaces of complex structures on compact four dimensional nilmanifolds, Bolletino U.M.I. (7) 5-A (1991), 381-389.
- E. Abbena, S. Garbiero and S. Salamon, private communication.
- W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Ergebnisse der Mathematik (3) 4, Springer-Verlag, Berlin, Heidelberg, 1984.
- A. K. Bousfield and V. K. A. M. Gugenheim, On PL de Rham theory and rational homotopy type, Memoirs Amer. Math. Soc. 8 (179) (1976).
- C. Benson and C. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), 513-518.
- L. A. Cordero, M. Fernández and A. Gray, Symplectic manifolds with no Kähler structure, Topology 25 (1986), 375-380.
- L. A. Cordero, M. Fernández and A. Gray, The Frölicher spectral sequence for compact nilmanifolds, Illinois J. Math. 35 (1991), 56-67.
- L. A. Cordero, M. Fernández, A. Gray and L. Ugarte, A general description of the terms in the Frölicher spectral sequence, Diff. Geom. Appl. 7 (1997), 75-84.
- L. A. Cordero, M. Fernández, A. Gray and L. Ugarte, Compact nilmanifolds with nilpotent complex structure: Dolbeault cohomology, preprint 1997.
- L. A. Cordero, M. Fernández, A. Gray and L. Ugarte, Frölicher spectral sequence of compact nilmanifolds with nilpotent complex structure, Proc. Conference on Differential Geometry, Budapest, July 27-30, 1996 (to appear).
- P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274.
- M. Fernández, M. J. Gotay and A. Gray, Four-dimensional compact parallelizable symplectic and complex manifolds, Proc. Amer. Math. Soc. 103 (1988), 1209-1212.
- A. Frölicher, Relations between the cohomology groups of Dolbeault and topological invariants, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 641-644.
- P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978.
- K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), 65-71.
- K. Kodaira, On the structure of compact complex analytic surfaces, I, Amer. J. Math. 86 (1964), 751-798.
- G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), 193-207.
- G. Lupton and J. Oprea, Cohomologically symplectic spaces: toral actions and the Gottlieb group, Trans. Amer. Math. Soc. 347 (1995), 261-288.
- I. A. Mal'cev, A class of homogeneous spaces, Amer. Math. Soc. Transl. No. 39 (1951).
- I. Nakamura, Complex parallelisable manifolds and their small deformations, J. Differential Geom. 10 (1975), 85-112.
- J. Neisendorfer and L. Taylor, Dolbeault Homotopy Theory, Trans. Amer. Math. Soc. 245 (1978), 183-210.
- K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. 59 (1954), 531-538.
- J. Oprea and A. Tralle, Symplectic Manifolds with no Kähler Structure, Lecture Notes in Math. 1661, Springer, Berlin, 1997.
- H. Pittie, The nondegeneration of the Hodge-de Rham spectral sequence, Bull. Amer. Math. Soc. 20 (1989), 19-22.
- Y. Sakane, On compact parallelisable solvmanifolds, Osaka J. Math. 13 (1976), 187-212.
- D. Tanré, Modèle de Dolbeault et fibré holomorphe, J. Pure Appl. Algebra 91 (1994), 333-345.
- W. P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467-468.
- A. Tralle, Applications of rational homotopy to geometry (results, problems, conjectures), Expo. Math. 14 (1996), 425-472.
- H. C. Wang, Complex parallelisable manifolds, Proc. Amer. Math. Soc. 5 (1954), 771-776.