Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 45 | 1 | 115-135
Tytuł artykułu

Variations on a conjecture of Halperin

Treść / Zawartość
Warianty tytułu
Języki publikacji
Halperin has conjectured that the Serre spectral sequence of any fibration that has fibre space a certain kind of elliptic space should collapse at the $E_2$-term. In this paper we obtain an equivalent phrasing of this conjecture, in terms of formality relations between base and total spaces in such a fibration (Theorem 3.4). Also, we obtain results on relations between various numerical invariants of the base, total and fibre spaces in these fibrations. Some of our results give weak versions of Halperin's conjecture (Remark 4.4 and Corollary 4.5). We go on to establish some of these weakened forms of the conjecture (Theorem 4.7). In the last section, we discuss extensions of our results and suggest some possibilities for future work.
Słowa kluczowe
Opis fizyczny
  • Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115, U.S.A.
  • [Au] Aubry, M. Homotopy Theory and Models, DMV Seminar 24 (1995) Birkhäuser, Basel.
  • [Ba] Baues, H. J. Algebraic Homotopy, Cambridge Tracts in Mathematics, vol. 15, Cambridge University Press, Cambridge, 1989.
  • [Co] Cornea, O. There is Just One Rational Cone-Length, Transactions A. M. S. 344 (1994) 835-848.
  • [Co-Fé-Le] Cornea, O., Y. Félix and J.-M. Lemaire, Rational Category and Cone Length of Poincaré Complexes, Topology 37 (1998) 743-748.
  • [D-G-M-S] Deligne, P., P. Griffiths, J. Morgan and D. Sullivan, Real Homotopy Theory of Kähler Manifolds, Invent. Math. 29 (1975) 245-274.
  • [Fé] Félix, Y. La Dichotomie Elliptique-Hyperbolique en Homotopie Rationnelle, Astérisque 176 (1989).
  • [Fé-Ha1] Y. Félix and S. Halperin, Formal Spaces with Finite-Dimensional Rational Homotopy, Transactions A. M. S. 270 (1982) 575-588.
  • [Fé-Ha2] Y. Félix and S. Halperin, Rational L-S Category and its Applications, Transactions A. M. S. 273 (1982) 1-37.
  • [Fé-Ha-Le] Félix, Y. S. Halperin and J.-M. Lemaire, The Rational LS Category of Products and of Poincaré Duality Complexes, Topology 37 (1998) 749-756.
  • [Fé-Th] Y. Félix and J.-C. Thomas, The Monoid of Self-Homotopy Equivalences of Some Homogeneous Spaces, Expositiones Math. 12 1994 305-322.
  • [Gr-Mo] P. Griffiths and J. Morgan, Rational Homotopy Theory and Differential Forms, Progress in Mathematics, vol. 15, Birkhäuser, Boston 1983.
  • [Ha1] Halperin, S. Finiteness in the Minimal Models of Sullivan, Transactions A. M. S. 230 (1977) 173-199.
  • [Ha2] Halperin, S. Rational Fibrations, Minimal Models and Fiberings of Homogeneous Spaces, Transactions A. M. S. 244 (1978) 199-223.
  • [Ha3] Halperin, S. Lectures on Minimal Models, Mem. S. M. F. 9/10 (1983).
  • [Ha-St] S. Halperin and J. Stasheff, Obstructions to Homotopy Equivalences, Advances in Math. 32 (1979) 233-279.
  • [He] Hess, K. A Proof of Ganea's Conjecture for Rational Spaces, Topology 30 (1991) 205-214.
  • [Ja] James, I. Lusternik-Schnirelmann Category, Handbook of Algebraic Topology, Elsevier, 1995, pp. 1293-1310.
  • [Je] Jessup, B. Rational L-S Category and a Conjecture of Ganea, J. of Pure and Appl. Alg. 65 (1990) 57-67.
  • [Lu] Lupton, G. Note on a Conjecture of Stephen Halperin, Springer Lecture Notes in Mathematics, vol. 1440, 1990, pp. 148-163.
  • [McC] McCleary, J. User's Guide to Spectral Sequences, Mathematics Lecture Series, vol. 12, Publish or Perish, Wilmington, 1985.
  • [Ma] Markl, M. Towards One Conjecture on Collapsing of the Serre Spectral Sequence, Rend. Circ. Mat. Palermo (2) Suppl. 22 (1990) 151-159.
  • [Me] Meier, W. Rational Universal Fibrations and Flag Manifolds, Math. Ann. 258 (1983) 329-340.
  • [Sh-Te] H. Shiga and M. Tezuka, Rational Fibrations, Homogeneous Spaces with Positive Euler Characteristic and Jacobians, Ann. Inst. Fourier 37 (1987) 81-106.
  • [Ta] Tanré, D. Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan, Springer Lecture Notes in Mathematics, vol. 1025, 1983.
  • [Th1] Thomas, J.-C. Rational Homotopy of Serre Fibrations, Ann. Inst. Fourier 31 (1981) 71-90.
  • [Th2] Thomas, J.-C. Eilenberg-Moore Models for Fibrations, Transactions A. M. S. 274 (1982) 203-225.
  • [Vi] Vigué, M. Réalisation de Morphismes Donnés en Cohomologie et Suite Spectrale d'Eilenberg-Moore, Transactions A. M. S. 265 (1981) 447-484.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.