ArticleOriginal scientific text

Title

Reduction of the singularities of foliations and applications

Authors 1

Affiliations

  1. Dpto. Algebra, Geometría y Topología, Fac. Ciencias, Univ. Valladolid, E-47005 Valladolid, Spain

Bibliography

  1. J. M. Aroca, H. Hironaka, J. L. Vicente, The Theory of the Maximal Contact, Memorias de Matemática del Instituto 'Jorge Juan' 29, Madrid, 1975.
  2. J. M. Aroca, H. Hironaka, J. L. Vicente, Desingularization Theorems, Memorias de Matemática del Instituto 'Jorge Juan' 30, Madrid, 1975.
  3. C. A. Briot, J. C. Bouquet, Propriétés des fonctions définies par les équations différentielles, Journal de l'École Polytechnique 36 (1856), 133-198.
  4. C. Camacho, P. Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. (2) 115 (1982), 579-595.
  5. F. Cano, Dicriticalness of a singular foliation, in: Holomorphic Dynamics (México 1986), X. Gómez-Mont, J. Seade, A. Verjovski (eds.), Lecture Notes in Math. 1345, Springer, Berlin, 1988, 73-94.
  6. F. Cano, Foliaciones singulares dicríticas, Mem. Real Acad. Cienc. Exact. Fís. Natur. Madrid 24 (1989).
  7. F. Cano, Reduction of the singularities of non-dicritical singular foliations. Dimension three, Amer. J. Math. 115 (1993), 509-588.
  8. F. Cano, Reduction of singularities of codimension one foliations in dimension three, in preparation, Univ. Valladolid.
  9. F. Cano, D. Cerveau, Desingularization of non-dicritical holomorphic foliations and existence of separatrices, Acta Math. 169 (1992), 1-103.
  10. F. Cano, J. M. Lion, R. Moussu, Frontière d'une hypersurface pfaffienne, Ann. Sci. École Norm. Sup. (4) 28 (1995), 591-646.
  11. F. Cano, J. F. Mattei, Hypersurfaces intégrales des feuilletages holomorphes, Ann. Inst. Fourier (Grenoble) 42 (1992), 49-72.
  12. J. Cano, An extension of the Newton-Puiseux polygon construction to give solutions of pfaffian forms, Ann. Inst. Fourier (Grenoble) 43 (1993), 125-142.
  13. J. Cano, Construction of invariant curves for holomorphic vector fields, Proc. Amer. Math. Soc. 125 (1997), 2649-2650.
  14. V. Cossart, Forme normale pour une fonction sur une variété de dimension trois en caractéristique positive, Thèse d'Etat, Orsay, 1988.
  15. J. Giraud, Forme normale d'une fonction sur une surface de caractéristique positive, Bull. Soc. Math. France 111 (1983), 109-124.
  16. J. Giraud, Condition de Jung pour les revêtements radiciels de hauteur un, in: Algebraic Geometry (Tokyo/Kyoto 1982), M. Raynaud and T. Shioda (eds.), Lecture Notes in Math. 1016, Springer, Berlin, 1983, 313-333.
  17. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characterictic zero, Ann. of Math. (2) 79 (1964), 109-203, 205-326.
  18. H. Hironaka, Introduction to the Theory of Infinitely Near Singular Points, Memorias de Matemática del Instituto 'Jorge Juan' 28, Madrid, 1975.
  19. H. Hironaka, La voûte étoilée, Astérisque 7-8 (1973), 13-20.
  20. H. Hironaka, Idealistic exponents of singularity, in: Algebraic Geometry, John Hopkins Univ. Press, Baltimore, 1977, 52-125.
  21. H. Hironaka, Characteristic polyhedra of singularities, J. Math. Kyoto Univ. 7 (1967), 251-293.
  22. H. Hironaka, Desingularization of excellent surfaces, appendix in: V. Cossart, J. Giraud, U. Orbanz, Resolution of Surfaces, Lecture Notes in Math. 1101, Springer, Berlin, 1984.
  23. H. Hironaka, Introduction to Real-analytic Sets and Real-analytic Maps, Istituto Matematico L. Tonelli, Pisa, 1973.
  24. H. Hironaka, Subanalytic sets, in: Number Theory, Algebraic Geometry and Commutative Algebra, Kinokuniya, Tokyo, 1973, 453-493.
  25. J. P. Jouanolou, Équations de Pfaff algébriques, Lecture Notes in Math. 708, Springer, Berlin, 1979.
  26. A. G. Khovanskii, Real analytic varieties with the finiteness property and complex abelian integrals, Functional Anal. Appl. 18 (1984), 119-127.
  27. J. M. Lion, Un lemme d'aile pour les ensembles pfaffiens, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 187-189.
  28. S. Łojasiewicz, Ensembles semi-analytiques, Inst. de Hautes Études Scientifiques, Bures-sur-Yvette, 1965.
  29. S. Łojasiewicz, M. A. Zurro, Una introducción a la geometría semi y sub analítica, Secretariado de Publicaciones, Universidad de Valladolid D.L., ed. Serie Ciencias 6, 1993.
  30. B. Malgrange, Frobenius avec singularités. I. Codimension un, Inst. Hautes Études Sci. Publ. Math. 46 (1976), 162-173.
  31. J. Martinet, Normalisation des champs de vecteurs holomorphes (d'après A.-D. Bryuno), in: Séminaire Bourbaki, vol. 1980/81, Lecture Notes in Math. 901, Springer, Berlin, 1982, exp. 564, 55-70.
  32. J. F. Mattei, R. Moussu, Holonomie et intégrales premières, Ann. Sci. École Norm. Sup. (4) 13 (1980), 469-523.
  33. R. Moussu, C. Roche, Théorie de Hovanskii et problème de Dulac, Invent. Math. 105 (1991), 431-441.
  34. R. Moussu, C. Roche, Théorèmes de finitude pour les variétés pfaffiennes, Ann. Inst. Fourier (Grenoble) 42 (1992), 393-420.
  35. A. Seidenberg, Reduction of the singularities of the differential equation Ady=Bdx, Amer. J. Math. 90 (1968), 248-269.
  36. Y. T. Siu, Techniques of Extension of Analytic Objects, Lecture Notes in Pure and Appl. Math. 8, Dekker, New York, 1974.
  37. M. Spivakovsky, A solution to Hironaka's polyhedra game, in: Arithmetic and Geometry vol. II, M. Artin and J. Tate (eds.), Progr. Math. 36, Birkhäuser, Boston, 1983, 419-432.
  38. M. Spivakovsky, Resolution of singularities, preprint, Grenoble-Valladolid-Toronto, 1996.
Pages:
51-71
Main language of publication
English
Published
1998
Exact and natural sciences