ArticleOriginal scientific text

Title

On symmetric semialgebraic sets and orbit spaces

Authors 1

Affiliations

  1. Mathematisches Institut, Universität Münster, Einsteinstraß e 62, D-48149 Münster, Germany

Abstract

For a symmetric (= invariant under the action of a compact Lie group G) semialgebraic basic set C, described by s polynomial inequalities, we show, that C can also be written by s + 1 G-invariant polynomials. We also describe orbit spaces for the action of G by a number of inequalities only depending on the structure of G.

Bibliography

  1. [A-B-R] C. Andradas, L. Bröcker, J. Ruiz, Constructible Sets in Real Geometry, Ergeb. Math. Grenzgeb. (3) 33, Springer, Berlin, 1996.
  2. [Be1] E. Becker, Hereditarily-Pythagorean Fields and Orderings of Higher Level, Monografias de Matemática 29, Instituto de Matématica Pura et Aplicada, Rio de Janeiro, 1978.
  3. [Be2] E. Becker, On the real spectrum of a ring and its applications to semi-algebraic geometry, Bull. Amer. Math. Soc. (N.S.) 15 (1986), 19-60.
  4. [B-C-R] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb. (3) 12, Springer, Berlin, 1987.
  5. [B] L. Bröcker, On basic semialgebraic sets, Exposition. Math. 9 (1991), 289-334.
  6. [DM-I] F. De Meyer, E. Ingraham, Separable Algebras over Commutative Rings, Lecture Notes in Math. 181, Springer, Berlin, 1971.
  7. [Di-Dr] J. Diller, A. Dress, Zur Galoistheorie pythagoreischer Körper, Arch. Math. (Basel) 16 (1965), 148-152.
  8. [Kn-Schei] M. Knebusch, C. Scheiderer, Einführung in die reelle Algebra, Vieweg, Braunschweig, 1989.
  9. [Kr] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Math. D1, Vieweg, Braunschweig, 1985.
  10. [Lu] D. Luna, Slices étales, in: Sur les groupes algébriques, Bull. Soc. Math. France, Mémoire 33, Paris, 1973, 81-105.
  11. [Mar] M. Marshall, Minimal generation of basic sets in the real spectrum of a commutative ring, in: Recent Advances in Real Algebraic Geometry and Quadratic Forms, Contemp. Math. 155, Amer. Math. Soc., Providence, 1994, 207-219.
  12. [Pr] A. Prestel, Lectures on Formally Real Fields, Lecture Notes in Math. 1093, Springer, Berlin, 1984.
  13. [Pro-Schw] C. Procesi, G. Schwarz, Inequalities defining orbit spaces, Invent. Math. 81 (1985), 539-554.
  14. [Schei1] C. Scheiderer, Stability index of real varieties, Invent. Math. 97 (1989), 467-483.
  15. [Schei2] C. Scheiderer, Spaces of orderings of fields under finite extensions, Manuscripta Math. 72 (1991), 27-47.
  16. [Schw] G. Schwarz, The topology of algebraic quotients, in: Topological Methods in Algebraic Transformation Groups, Progr. Math. 80, Birkhäuser, Boston, 1989, 135-152.
  17. [Slo-Kno] P. Slodowy, Der Scheibensatz für algebraische Transformationsgruppen, mit einem Anhang von F. Knop, in: Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem. 13, Birkhäuser, Basel, 1989, 89-114.
  18. [Weyl] H. Weyl, The Classical Groups, 2nd ed., Princeton University Press, 1946.
Pages:
37-50
Main language of publication
English
Published
1998
Exact and natural sciences