ArticleOriginal scientific text

Title

Division et extension dans des classes de Carleman de fonctions holomorphes

Authors 1

Affiliations

  1. CNRS - URA 751, Bât. M2, Mathématiques, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France

Abstract

Let Ω be a bounded pseudoconvex domain in n with C1 boundary and let X be a complete intersection submanifold of Ω, defined by holomorphic functions v1,...,vp (1 ≤ p ≤ n-1) smooth up to ∂Ω. We give sufficient conditions ensuring that a function f holomorphic in X (resp. in Ω, vanishing on X), and smooth up to the boundary, extends to a function g holomorphic in Ω and belonging to a given strongly non-quasianalytic Carleman class {l!Ml} in Ω¯ (resp. satisfies f=v1f1+...+vpfp with f1,...,fp holomorphic in Ω and {l!Ml}-regular in Ω¯). The essential assumption is that f and v1,...,vp belong to some (maybe smaller) Carleman class {l!M-_l}, where the sequences M- and M are precisely related by geometric conditions on X and Ω.

Bibliography

  1. [A1] E. Amar, Cohomologie complexe et applications, J. London Math. Soc. (2) 29 (1984), 127-140.
  2. [A2] E. Amar, Non-division dans A(Ω¯), Math. Z. 188 (1985), 493-511.
  3. [DBT] P. de Bartolomeis & G. Tomassini, Finitely generated ideals in A(D¯), Adv. in Math. 46 (1982), 162-170.
  4. [BBMT] J. Bonet, R. W. Braun, R. Meise & B. A. Taylor, Whitney's extension theorem for nonquasianalytic functions, Studia Math. 99 (1991), 156-184.
  5. [B] J. Bruna, An extension theorem of Whitney type for non quasi-analytic classes of functions, J. London Math. Soc. (2) 22 (1980), 495-505.
  6. [CC1] J. Chaumat & A.-M. Chollet, Théorème de Whitney dans des classes ultradifférentiables, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 901-906.
  7. [CC2] J. Chaumat & A.-M. Chollet, Noyaux pour résoudre l'équation ¯ dans des classes ultradifférentiables sur des compacts irréguliers de n, in: Several Complex Variables (Stockholm 1987/1988), Math. Notes 38, Princeton Univ. Press, Princeton, 1993, 205-226.
  8. [D] E. M. Dynkin, Pseudoanalytic extension of smooth functions. The uniform scale, Amer. Math. Soc. Transl. 115 (1980), 33-58.
  9. [GS] R. Gay & A. Sebbar, Division et extension dans l'algèbre A(Ω¯) d'un ouvert pseudoconvexe à bord lisse de n, Math. Z. 189 (1985), 421-447.
  10. [G] R. C. Gunning, Introduction to Holomorphic Functions of Several Variables, vol. III: Homological Theory, Wadsworth & Brooks/Cole, Monterey, 1990.
  11. [M] B. Malgrange, Ideals of Differentiable Functions, Oxford University Press, Bombay, 1966.
  12. [N] A. Nagel, On algebras of holomorphic functions with C boundary values, Duke Math. J. 41 (1974), 527-535.
  13. [Th1] V. Thilliez, Prolongement dans des classes ultradifférentiables et propriétés de régularité des compacts de n, Ann. Polon. Math. 63 (1996), 71-88.
  14. [Th2] V. Thilliez, Sur les fonctions composées ultradifférentiables, J. Math. Pures Appl. (9) 76 (1997), 499-524.
Pages:
233-246
Main language of publication
English
Published
1998
Exact and natural sciences