ArticleOriginal scientific text

Title

On homology classes represented by real algebraic varieties

Authors 1, 2

Affiliations

  1. Department of Mathematics, Vrije Universiteit, De Boelelaan 1081, 1081 HV - Amsterdam, The Netherlands
  2. University of New Mexico, Department of Mathematics and Statistics, Albuquerque, New Mexico 87131-1141, U.S.A.

Bibliography

  1. R. Benedetti and M. Dedò, Counterexamples to representing homology classes by real algebraic subvarieties up to homeomorphism, Compositio Math. 53 (1984), 143-151.
  2. R. Benedetti and A. Tognoli, Approximation theorems in real algebraic geometry, Boll. Un. Mat. Ital. Suppl. 1980, no. 2, 209-228.
  3. R. Benedetti and A. Tognoli, On real algebraic vector bundles, Bull. Sci. Math. (2) 104 (1980), 89-112.
  4. R. Benedetti and A. Tognoli, Remarks and counterexamples in the theory of real algebraic vector bundles and cycles, in: Géométrie algébrique réelle et formes quadratiques, Lecture Notes in Math. 959, Springer, Berlin, 1982, 198-211.
  5. E. Bierstone and P. D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), 207-302.
  6. J. Bochnak, M. Coste and M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb. (3) 12, Springer, Berlin, 1987.
  7. J. Bochnak and J. Huisman, When is a complex elliptic curve the product of two real algebraic curves?, Math. Ann. 293 (1992), 469-474.
  8. J. Bochnak and W. Kucharz, Algebraic approximation of mappings into spheres, Michigan Math. J. 34 (1987), 119-125.
  9. J. Bochnak and W. Kucharz, Algebraic models of smooth manifolds, Invent. Math. 97 (1989), 585-611.
  10. J. Bochnak and W. Kucharz, K-theory of real algebraic surfaces and threefolds, Math. Proc. Cambridge Philos. Soc. 106 (1989), 471-480.
  11. J. Bochnak and W. Kucharz, Algebraic cycles and approximation theorems in real algebraic geometry, Trans. Amer. Math. Soc. 337 (1993), 463-472.
  12. J. Bochnak and W. Kucharz, Real algebraic hypersurfaces in complex projective varieties, Math. Ann. 301 (1995), 381-397.
  13. J. Bochnak, W. Kucharz and M. Shiota, The divisor class groups of some rings of global real analytic, Nash or regular functions, in: Géométrie algébrique réelle et formes quadratiques, Lecture Notes in Math. 959, Springer, Berlin, 1982, 218-248.
  14. J. Bochnak, W. Kucharz and M. Shiota, On algebraicity of global real analytic sets and functions, Invent. Math. 70 (1982), 115-156.
  15. A. Borel and A. Haefliger, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France 89 (1961), 461-513.
  16. N. Bourbaki, Algèbre commutative, Hermann, Paris, 1961-1965.
  17. L. Bröcker, Reelle Divisoren, Arch. Math. (Basel) 35 (1980), 140-143.
  18. W. Fulton, Intersection Theory, Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1984.
  19. J. van Hamel, Real algebraic cycles on complex projective varieties, Math. Z. 225 (1997), 177-198.
  20. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. (2) 79 (1964), 109-203, 205-326.
  21. S. T. Hu, Homotopy Theory, Academic Press, New York, 1959.
  22. J. Huisman, Real abelian varieties with complex multiplication, Ph.D. Thesis, Vrije Universiteit Amsterdam, 1992.
  23. J. Huisman, The underlying real algebraic structure of complex elliptic curves, Math. Ann. 294 (1992), 19-35.
  24. J. Huisman, A real algebraic vector bundle is strongly algebraic whenever its total space is affine, in: Real Algebraic Geometry and Topology, Contemp. Math. 182, Amer. Math. Soc., Providence, 1995, 117-119.
  25. F. Ischebeck and H.-W. Schülting, Rational and homological equivalence for real cycles, Invent. Math. 94 (1988), 307-316.
  26. N. Ivanov, Approximation of smooth manifolds by real algebraic sets, Russian Math. Surveys 37 (1982), 1-59.
  27. W. Kucharz, On homology of real algebraic sets, Invent. Math. 82 (1985), 19-25.
  28. W. Kucharz, Algebraic equivalence and homology classes of real algebraic varieties, Math. Nachr. 180 (1996), 135-140.
  29. F. Mangolte, Cycles algébriques sur les surface K3 réelles, Math. Z. 225 (1997), 559-576.
  30. F. Mangolte and J. van Hamel, % Algebraic cycles on real Enriques surfaces, %preprint, 1996. Algebraic cycles and topology of real Enriques surfaces, Compositio Math. 110 (1998), 215-237.
  31. J.-J. Risler, Sur l'homologie des surfaces algébriques réelles, in: Géométrie algébrique réelle et formes quadratiques, Lecture Notes in Math. 959, Springer, Berlin, 1982, 381-385.
  32. H.-W. Schülting, Algebraische und topologische reelle Zyklen unter birationalen Transformationen, Math. Ann. 272 (1985), 441-448.
  33. M. Shiota, Real algebraic realization of characteristic classes, Publ. Res. Inst. Math. Sci. 18 (1982), 995-1008.
  34. M. Shiota, Equivalence of differentiable functions, rational functions and polynomials, Ann. Inst. Fourier (Grenoble) 32 no. 4 (1982), 167-204.
  35. R. Silhol, A bound on the order of Ha_n-1(X,2) on a real algebraic variety, in: Géométrie algébrique réelle et formes quadratiques, Lecture Notes in Math. 959, Springer, Berlin, 1982, 443-450.
  36. R. Silhol, Real Algebraic Surfaces, Lecture Notes in Math. 1392, Springer, Berlin, 1989.
  37. P. Teichner, 6-dimensional manifolds without totally algebraic homology, Proc. Amer. Math. Soc. 123 (1995), 2909-2914.
  38. R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86.
  39. A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 167-185.
  40. E. Witt, Zerlegung reeler algebraischer Funktionen in Quadrate, Schiefkörper über reellen Funktionenkörper, J. Reine Angew. Math. 171 (1934), 4-11.
Pages:
21-35
Main language of publication
English
Published
1998
Exact and natural sciences