ArticleOriginal scientific text

Title

Some optimal control applications of real-analytic stratifications and desingularization

Authors 1

Affiliations

  1. Department of Mathematics; Rutgers, the State University of New Jersey, Piscataway, NJ 08854-8019, U.S.A.

Bibliography

  1. P. Brunovsky, Every normal linear system has a regular synthesis, Math. Slovaca 28 (1978), 81-100.
  2. P. Brunovsky, Existence of regular synthesis for general problems, J. Differential Equations 38 (1980), 317-343.
  3. R. Hermann, On the accessibility problem in control theory, in: International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics, J. P. LaSalle and S. Lefschetz (eds.), Academic Press, New York, 1963, 325-332.
  4. S. Łojasiewicz Jr., and H. J. Sussmann, Some examples of reachable sets and optimal cost functions that fail to be subanalytic, SIAM J. Control Optim. 23 (1985), 584-598.
  5. T. Nagano, Linear differential systems with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan 18 (1966), 398-404.
  6. P. Stefan, Accessibility and Singular Foliations, Ph. D. Thesis, University of Warwick, 1973.
  7. H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171-188.
  8. H. J. Sussmann, Single-input observability of continuous-time systems, Math. Systems Theory 12 (1979), 371-393.
  9. H. J. Sussmann, A weak regularity theorem for real analytic optimal control problems, Rev. Mat. Iberoamericana 2 (1986), 307-317.
  10. H. J. Sussmann, Why real analyticity is important in control theory, in: Perspectives in Control Theory, Proceedings of the Sielpia Conference, Sielpia, Poland, 1988, B. Jakubczyk, K. Malanowski, and W. Respondek (eds.), Birkäuser, Boston, 1990, 315-340.
  11. H. J. Sussmann, A strong version of the Łojasiewicz Maximum Principle, in: Optimal Control of Differential Equations, N. H. Pavel (ed.), Lecture Notes in Pure and Appl. Math. 160, M. Dekker, New York, 1994, 293-309.
  12. H. J. Sussmann, A strong version of the Maximum Principle under weak hypotheses, in: Proc. 33rd IEEE Conf. Decision and Control, Orlando, FL, 1994, IEEE Publications, 1994, 1950-1956.
  13. H. J. Sussmann, A strong maximum principle for systems of differential inclusions, in: Proc. 35th IEEE Conf. Decision and Control, Kobe, Japan, Dec. 1996, IEEE Publications, 1996, 1809-1814.
  14. H. J. Sussmann, Multidifferential calculus: chain rule, open mapping and transversal intersection theorems, to appear in: Optimal Control: Theory, Algorithms, and Applications, W. W. Hager and P. M. Pardalos (eds.), Kluwer Academic Publishers, 1997.
  15. M. I. Zelikin and V. F. Borisov, Theory of Chattering Control, with Applications to Astronautics, Robotics, Economics and Engineering, Birkhäuser, Boston, 1994.
Pages:
211-232
Main language of publication
English
Published
1998
Exact and natural sciences