ArticleOriginal scientific textExamples of functions
Title
Examples of functions -extendable for each finite, but not -extendable
Authors 1
Affiliations
- Instytut Matematyki, Uniwersytet Jagielloński,, ul. Reymonta 4, 30-059 Kraków, Poland,
Abstract
In Example 1, we describe a subset X of the plane and a function on X which has a -extension to the whole for each finite, but has no -extension to . In Example 2, we construct a similar example of a subanalytic subset of ; much more sophisticated than the first one. The dimensions given here are smallest possible.
Bibliography
- E. Bierstone, P. D. Milman, Geometric and differential properties of subanalytic sets, Bull. Amer. Math. Soc. 25 (1991), 385-383.
- E. Bierstone, P. D. Milman, Geometric and differential properties of subanalytic sets, preprint.
- E. Bierstone, P. D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5-42.
- E. Bierstone, P. D. Milman, W. Pawłucki, Composite differentiable functions, Duke Math. J. 83 (1996), 607-620.
- Z. Denkowska, S. Łojasiewicz, J. Stasica, Certaines propriétés élémentaires des ensembles sous-analytiques, Bull. Polish Acad. Sci. Math. 27 (1979), 529-536.
- A. Gabrielov, Projections of semianalytic sets, Funkcional Anal. i Priložen. 2 no. 4 (1968), 18-30 (in Russian). English transl.: Functional Anal. Appl. 2 (1968), 282-291.
- H. Hironaka, Subanalytic sets, in: Number Theory, Algebraic Geometry and Commutative Algebra in Honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, 453-493.
- B. Malgrange, Ideals of Differentiable Functions, Oxford University Press, Bombay, 1966.
- J. Merrien, Prolongateurs de fonctions différentiables d'une variable réelle, J. Math. Pures Appl. (9) 45 (1966), 291-309.
- W. Pawłucki, On relations among analytic functions and geometry of subanalytic sets, Bull. Polish Acad. Sci. Math. 37 (1989), 117-125.
- W. Pawłucki, On Gabrielov's regularity condition for analytic mappings, Duke Math. J. 65 (1992), 299-311.