ArticleOriginal scientific text

Title

On the Łojasiewicz exponent of the gradient of a holomorphic function

Authors 1

Affiliations

  1. Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland

Abstract

The Łojasiewicz exponent of the gradient of a convergent power series h(X,Y) with complex coefficients is the greatest lower bound of the set of λ > 0 such that the inequality |h(x,y)|c|xy|λ holds near 0C2 for a certain c > 0. In the paper, we give an estimate of the Łojasiewicz exponent of grad h using information from the Newton diagram of h. We obtain the exact value of the exponent for non-degenerate series.

Bibliography

  1. [BŁ] J. Bochnak and S. Łojasiewicz, A converse of the Kuiper-Kuo theorem, in: Proceedings of Liverpool Singularities-Symposium I, Lecture Notes in Math. 192, Springer, Berlin, 1971, 254-261.
  2. [BK] E. Brieskorn and H. Knörer, Ebene algebraische Kurven, Birkhäuser, Basel, 1981.
  3. [ChK1] J. Chądzyński and T. Krasiński, The Łojasiewicz exponent of an analytic mapping of two complex variables at an isolated zero, in: Singularities, Banach Center Publ. 20, PWN-Polish Science Publishers, Warszawa, 1988, 139-146.
  4. [ChK2] J. Chądzyński and T. Krasiński, Resultant and the Łojasiewicz exponent, Ann. Polon. Math. 61 (1995), 95-100.
  5. [Fu] T. Fukui, Łojasiewicz type inequalities and Newton diagrams, Proc. Amer. Math. Soc. 112 (1991), 1169-1183.
  6. [Kou] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31.
  7. [Kuch1] W. Kucharz, Examples in the theory of sufficiency of jets, Proc. Amer. Math. Soc. 96 (1986), 163-166.
  8. [Kuch2] W. Kucharz, Newton polygons and topological determinancy of analytic germs, Period. Math. Hungar. 22 (1991), 129-132.
  9. [Kuip] N. H. Kuiper, C1-equivalence of functions near isolated critical points, in: Symposium on Infinite-Dimensional Topology, R. D. Anderson (ed.), Ann. of Math. Studies 69, Princeton Univ. Press, Princeton, 1972, 199-218.
  10. [K] T. C. Kuo, On C0 sufficiency of jets of potential functions, Topology 8 (1969), 167-171.
  11. [KL] T. C. Kuo and Y. C. Lu, On analytic function germ of two complex variables, Topology 16 (1977), 299-310.
  12. [LJT] M. Lejeune-Jalabert and B. Teissier, Cloture integral des idéaux et equisingularité, Centre Math. École Polytechnique, Paris, 1974.
  13. [Li] B. Lichtin, Estimation of Łojasiewicz exponent and Newton polygons, Invent. Math. 64 (1981), 417-429.
  14. [LCh] Y. C. Lu and S. S. Chang, On C0 sufficiency of complex jets, Canad. J. Math. 25 (1973), 874-880.
  15. [Ł] S. Łojasiewicz, Ensembles semi-analytiques, Inst. de Hautes Études Scientifiques, Bures-sur-Yvette, 1965.
  16. [Pł1] A. Płoski, Une évaluation pour les sous-ensembles analytiques complexes, Bull. Polish Acad. Sci. Math. 31 (1983), 259-262.
  17. [Pł2] A. Płoski, Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of C2, Ann. Polon. Math. 51 (1990), 275-281.
  18. [Te] B. Teissier, Variétés polaires, Invent. Math. 40 (1977), 267-292.
Pages:
149-166
Main language of publication
English
Published
1998
Exact and natural sciences