ArticleOriginal scientific text
Title
On the Łojasiewicz exponent of the gradient of a holomorphic function
Authors 1
Affiliations
- Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Abstract
The Łojasiewicz exponent of the gradient of a convergent power series h(X,Y) with complex coefficients is the greatest lower bound of the set of λ > 0 such that the inequality holds near for a certain c > 0. In the paper, we give an estimate of the Łojasiewicz exponent of grad h using information from the Newton diagram of h. We obtain the exact value of the exponent for non-degenerate series.
Bibliography
- [BŁ] J. Bochnak and S. Łojasiewicz, A converse of the Kuiper-Kuo theorem, in: Proceedings of Liverpool Singularities-Symposium I, Lecture Notes in Math. 192, Springer, Berlin, 1971, 254-261.
- [BK] E. Brieskorn and H. Knörer, Ebene algebraische Kurven, Birkhäuser, Basel, 1981.
- [ChK1] J. Chądzyński and T. Krasiński, The Łojasiewicz exponent of an analytic mapping of two complex variables at an isolated zero, in: Singularities, Banach Center Publ. 20, PWN-Polish Science Publishers, Warszawa, 1988, 139-146.
- [ChK2] J. Chądzyński and T. Krasiński, Resultant and the Łojasiewicz exponent, Ann. Polon. Math. 61 (1995), 95-100.
- [Fu] T. Fukui, Łojasiewicz type inequalities and Newton diagrams, Proc. Amer. Math. Soc. 112 (1991), 1169-1183.
- [Kou] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31.
- [Kuch1] W. Kucharz, Examples in the theory of sufficiency of jets, Proc. Amer. Math. Soc. 96 (1986), 163-166.
- [Kuch2] W. Kucharz, Newton polygons and topological determinancy of analytic germs, Period. Math. Hungar. 22 (1991), 129-132.
- [Kuip] N. H. Kuiper,
-equivalence of functions near isolated critical points, in: Symposium on Infinite-Dimensional Topology, R. D. Anderson (ed.), Ann. of Math. Studies 69, Princeton Univ. Press, Princeton, 1972, 199-218. - [K] T. C. Kuo, On
sufficiency of jets of potential functions, Topology 8 (1969), 167-171. - [KL] T. C. Kuo and Y. C. Lu, On analytic function germ of two complex variables, Topology 16 (1977), 299-310.
- [LJT] M. Lejeune-Jalabert and B. Teissier, Cloture integral des idéaux et equisingularité, Centre Math. École Polytechnique, Paris, 1974.
- [Li] B. Lichtin, Estimation of Łojasiewicz exponent and Newton polygons, Invent. Math. 64 (1981), 417-429.
- [LCh] Y. C. Lu and S. S. Chang, On
sufficiency of complex jets, Canad. J. Math. 25 (1973), 874-880. - [Ł] S. Łojasiewicz, Ensembles semi-analytiques, Inst. de Hautes Études Scientifiques, Bures-sur-Yvette, 1965.
- [Pł1] A. Płoski, Une évaluation pour les sous-ensembles analytiques complexes, Bull. Polish Acad. Sci. Math. 31 (1983), 259-262.
- [Pł2] A. Płoski, Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of
, Ann. Polon. Math. 51 (1990), 275-281. - [Te] B. Teissier, Variétés polaires, Invent. Math. 40 (1977), 267-292.