ArticleOriginal scientific text

Title

Multiplicity of polynomials on trajectories of polynomial vector fields in C3

Authors 1, 2, 3

Affiliations

  1. Department of Mathematics, Purdue University, W. Lafayette, IN 47907-1395
  2. École Nationale Supérieure de Techniques Avancées, 32, Bd Victor, F-75739 Paris cedex 15
  3. Équipe Analyse Algébrique, Institut de Mathématiques, Université Paris 6, Case 82, 2 place Jussieu, F-75252 Paris Cedex 05

Abstract

Let ξ be a polynomial vector field on ^n with coefficients of degree d and P be a polynomial of degree p. We are interested in bounding the multiplicity of a zero of a restriction of P to a non-singular trajectory of ξ, when P does not vanish identically on this trajectory. Bounds doubly exponential in terms of n are already known ([9,5,10]). In this paper, we prove that, when n=3, there is a bound of the form p+2p(p+d-1)2. In Control Theory, such a bound can be used to give an estimate of the degree of nonholonomy for a system of polynomial vector fields (this degree expresses the level of Lie-bracketing needed to generate the tangent space at each point).

Bibliography

  1. V. I. Arnold, S. M. Guseĭn-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Birkhäuser, Boston, 1985.
  2. A. Bellaïche, The tangent space in sub-Riemannian geometry, in: Sub-Riemannian Geometry, A. Bellaïche and J.-J. Risler (ed.), Progr. Math. 144, Birkhäuser, Basel, 1996, 1-78.
  3. W. Fulton, Intersection Theory, Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1984.
  4. A. Gabrielov, J.-M. Lion and R. Moussu, Ordre de contact de courbes intégrales du plan, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 219-221.
  5. A. Gabrielov, Multiplicities of zeroes of polynomials on trajectories of polynomial vector fields and bounds on degree of nonholonomy, Math. Res. Lett. 2 (1995), 437-451.
  6. A. Gabrielov, Multiplicities of Pfaffian intersections and the Łojasiewicz inequality, Selecta Math. (N. S.) 1 (1995), 113-127.
  7. A. Gabrielov, Multiplicity of a Zero of an Analytic Function on a Trajectory of a Vector Field, Preprint, Purdue University, March 1997.
  8. E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, Boston, 1985.
  9. Y. V. Nesterenko, Estimates for the number of zeros of certain functions, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge Univ. Press, Cambridge, 1988, 263-269.
  10. J.-J. Risler, A bound for the degree of nonholonomy in the plane, Theoret. Comput. Sci. 157 (1996), 129-136.
  11. P. Samuel, Méthodes d'algèbre abstraite en géométrie algébrique, Ergeb. Math. Grenzgeb. 4, Springer, Berlin, 1967.
Pages:
109-121
Main language of publication
English
Published
1998
Exact and natural sciences