PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 43 | 1 | 321-329
Tytuł artykułu

Quantum interfaces

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We review recent results on interface states in quantum statistical mechanics.
Słowa kluczowe
Rocznik
Tom
43
Numer
1
Strony
321-329
Opis fizyczny
Daty
wydano
1998
Twórcy
  • Department of Mathematics, University of California, Davis, Davis, California 95616-8633, U.S.A.
Bibliografia
  • [1] C. Borgs, J. Chayes and J. Fröhlich, Dobrushin states for classical spin systems with complex interactions, to appear in J. Stat. Phys.
  • [2] C. Borgs, J. Chayes and J. Fröhlich, Dobrushin states in quantum lattice systems, Commun. Math. Phys. 189 (1997), 591.
  • [3] O. Bratteli, A. Kishimoto and D. Robinson, Ground states of quantum spin systems, Commun. Math. Phys. 64 (1978), 41-48.
  • [4] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, 2 volumes, Springer Verlag-Berlin-Heidelberg-New York, 2nd edition, 1987 and 1996.
  • [5] R. L. Dobrushin, Gibbs states describing the coexistence of phases for a three-dimensional Ising model, Theor. Prob. Appl. 17 (1972), 582.
  • [6] N. Datta, A. Messager and B. Nachtergaele, Rigidity of interfaces in the Falicov-Kimball model, archived as math-ph/9804008.
  • [7] C.-T. Gottstein and R. F. Werner, Ground states of the infinite q-deformed Heisenberg ferromagnet, preprint archived as cond-mat/9501123.
  • [8] F. C. Alcaraz, S. R. Salinas and W. F. Wreszinski, Anisotropic ferromagnetic quantum domains, Phys. Rev. Lett. 75 (1995), 930.
  • [9] G. Albertini, V. E. Korepin and A. Schadschneider, XXZ model as an effective Hamiltonian for generalized Hubbard models with broken η-symmetry, J. Phys. A: Math. Gen. 25 (1995), L303-L309.
  • [10] T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic long-range order, Physica 138A (1986), 320-358.
  • [11] L. M. Falicov and J. C. Kimball, Phys. Rev. B 22 (1969), 997.
  • [12] M. Fannes and R. F. Werner, Boundary conditions for quantum lattice systems, Helv. Phys. Acta 68 (1995), 635-657.
  • [13] T. Matsui, On Ground States of the One-Dimensional Ferromagnetic XXZ Model, Lett. Math. Phys. 37 (1996), 397-403.
  • [14] T. Matsui, On the spectra of kink for ferromagnetic XXZ models, Lett. Math. Phys. 42 (1997), 229.
  • [15] T. Matsui, Translation Symmetry Breaking and Soliton Sectors for Massive Quantum Spin Models in 1+1 Dimensions, Commun. Math. Phys. 189 (1997), 127.
  • [16] A. Messager and S. Miracle-Solé, Low temperature states in the Falicov-Kimball model, Rev. Math. Phys. 8 (1996), 271.
  • [17] T. Koma and B. Nachtergaele, The spectral gap of the ferromagnetic XXZ chain, Lett. Math. Phys. 40 (1997), 1-16.
  • [18] T. Koma and B. Nachtergaele, The complete set of ground states of the ferromagnetic XXZ chains, preprint archived as cond-mat/9709208, to appear in Adv. Theor. Math. Phys.
  • [19] T. Koma and B. Nachtergaele, in preparation.
  • [20] A. W. Majewski and B. Zegarliński, Quantum Stochastic Dynamics I, Math. Phys. Electronic J. 1, No2 (1995), 37.
  • [21] A. W. Majewski, R. Olkiewicz and B. Zegarliński, this volume.
  • [22] J. Propp, private communication.
  • [23] R. H. Schonmann and S. B. Shlosman, Wulff droplets and the metastable relaxation of kinetic Ising models, archived as mparc # 97-272.
  • [24] B. Simon, The Statistical Mechanics of Lattice Gases, Vol 1, Princeton University Press, 1993.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv43i1p321bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.