ArticleOriginal scientific text

Title

Dynamical entropy of a non-commutative version of the phase doubling

Authors 1, 1

Affiliations

  1. Instituut voor Theoretische Fysica, K.U. Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium

Abstract

A quantum dynamical system, mimicking the classical phase doubling map zz2 on the unit circle, is formulated and its ergodic properties are studied. We prove that the quantum dynamical entropy equals the classical value log2 by using compact perturbations of the identity as operational partitions of unity.

Bibliography

  1. R. Alicki, J. Andries, M. Fannes and P. Tuyls, An algebraic approach to the Kolmogorov-Sinai entropy, Rev. Math. Phys. 8(2) (1996), 167-184.
  2. R. Alicki and M. Fannes, Defining quantum dynamical entropy, Lett. Math. Phys. 32 (1994), 75-82.
  3. J. Andries, M. De Cock and M. Fannes, Preprint K.U. Leuven TF-97/29.
  4. G.G. Emch, H. Narnhofer, G.L. Sewell and W. Thirring, Anosov actions on noncommutative algebras, J. Math. Phys. 35(11) (1994), 5582-5599.
  5. B. Simon, Trace ideals and their applications, London Mathematical Society Lecture Notes Series 35, Cambridge University Press, Cambridge, 1979.
  6. P. Tuyls, Towards Quantum Kolmogorov-Sinai Entropy, Ph. D. Thesis, K.U. Leuven, 1997.
Pages:
31-40
Main language of publication
English
Published
1998
Exact and natural sciences