We construct an example of a noncommutative dynamical system defined over a two dimensional noncommutative differential manifold with two positive Lyapunov exponents equal to ln d each. This dynamical system is isomorphic to the quantum Bernoulli shift on the half-chain with the quantum dynamical entropy equal to 2 ln d. This result can be interpreted as a noncommutative analog of the isomorphism between the classical one-sided Bernoulli shift and the expanding map of the circle and moreover as an example of the noncommutative Pesin theorem.
Institute of Theoretical Physics and Astrophysics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland
Bibliografia
[1]] J. Andries and M. De Cock, Dynamical entropy of a non-commutative version of the phase doubling, this volume.
[2] J. Andries, M. Fannes, P. Tuyls, and R. Alicki, The dynamical entropy of the quantum Arnold cat map, Lett. Math. Phys. 35 (1995), 375-383.
[3] R. Alicki and M. Fannes, Defining quantum dynamical entropy, Lett. Math. Phys. 32 (1994), 75-82.
[4] R. Alicki, J. Andries, M. Fannes and P. Tuyls, An algebraic approach to the Kolmogorov-Sinai entropy, Rev. Math. Phys. 8 (1996), 167-184.
[5] A. Connes, Non-commutative Geometry, Academic Press, New York, 1994.
[6] A. Connes, H. Narnhofer, and W. Thirring, Dynamical entropy of C*-algebras and von Neumann algebras, Commun. Math. Phys. 112 (1987) 691-719.
[7] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic theory, Springer, Berlin, 1982.
[8] G. Emch, H. Narnhofer, W. Thirring, and G.L. Sewell, Anosov actions on non-commutative algebras, J. Math. Phys. 35, (1994) 5582-5599.
[9] T. Hudetz, Quantum dynamical entropy revised, this volume.
[10] G. Lindblad, Dynamical Entropy for Quantum Systems, in: Quantum Probability and Applications, Vol.III, L. Accardi and W. von Waldenfels (eds.), Springer LNM 1303, Berlin, 1988, 183-191.
[11] W. A. Majewski and M. Kuna, On quantum characteristic exponents, J. Math. Phys. 34, (1993) 5007-5015.
[12] P. Tuyls, Towards Quantum Kolmogorov-Sinai Entropy, Ph.D. Thesis, Leuven, 1997.
[13] D. Voiculescu, Dynamical approximation entropies and topological entropy in operator algebras, Commun. Math. Phys. 144, (1992) 443-490.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv43i1p25bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.