ArticleOriginal scientific text

Title

Quantum geometry of noncommutative Bernoulli shifts

Authors 1

Affiliations

  1. Institute of Theoretical Physics and Astrophysics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland

Abstract

We construct an example of a noncommutative dynamical system defined over a two dimensional noncommutative differential manifold with two positive Lyapunov exponents equal to ln d each. This dynamical system is isomorphic to the quantum Bernoulli shift on the half-chain with the quantum dynamical entropy equal to 2 ln d. This result can be interpreted as a noncommutative analog of the isomorphism between the classical one-sided Bernoulli shift and the expanding map of the circle and moreover as an example of the noncommutative Pesin theorem.

Bibliography

  1. [1]] J. Andries and M. De Cock, Dynamical entropy of a non-commutative version of the phase doubling, this volume.
  2. [2] J. Andries, M. Fannes, P. Tuyls, and R. Alicki, The dynamical entropy of the quantum Arnold cat map, Lett. Math. Phys. 35 (1995), 375-383.
  3. [3] R. Alicki and M. Fannes, Defining quantum dynamical entropy, Lett. Math. Phys. 32 (1994), 75-82.
  4. [4] R. Alicki, J. Andries, M. Fannes and P. Tuyls, An algebraic approach to the Kolmogorov-Sinai entropy, Rev. Math. Phys. 8 (1996), 167-184.
  5. [5] A. Connes, Non-commutative Geometry, Academic Press, New York, 1994.
  6. [6] A. Connes, H. Narnhofer, and W. Thirring, Dynamical entropy of C*-algebras and von Neumann algebras, Commun. Math. Phys. 112 (1987) 691-719.
  7. [7] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic theory, Springer, Berlin, 1982.
  8. [8] G. Emch, H. Narnhofer, W. Thirring, and G.L. Sewell, Anosov actions on non-commutative algebras, J. Math. Phys. 35, (1994) 5582-5599.
  9. [9] T. Hudetz, Quantum dynamical entropy revised, this volume.
  10. [10] G. Lindblad, Dynamical Entropy for Quantum Systems, in: Quantum Probability and Applications, Vol.III, L. Accardi and W. von Waldenfels (eds.), Springer LNM 1303, Berlin, 1988, 183-191.
  11. [11] W. A. Majewski and M. Kuna, On quantum characteristic exponents, J. Math. Phys. 34, (1993) 5007-5015.
  12. [12] P. Tuyls, Towards Quantum Kolmogorov-Sinai Entropy, Ph.D. Thesis, Leuven, 1997.
  13. [13] D. Voiculescu, Dynamical approximation entropies and topological entropy in operator algebras, Commun. Math. Phys. 144, (1992) 443-490.
Pages:
25-29
Main language of publication
English
Published
1998
Exact and natural sciences