ArticleOriginal scientific text

Title

Quantum dynamical entropy revisited

Authors 1

Affiliations

  1. Institute of Mathematics, University of Vienna, Strudlhofgasse 4, A-1090 Vienna, Austria

Abstract

We define a new quantum dynamical entropy for a C*-algebra automorphism with an invariant state (and for an appropriate 'approximating' subalgebra), which entropy is a 'hybrid' of the two alternative definitions by Connes, Narnhofer and Thirring resp. by Alicki and Fannes (and earlier, Lindblad). We report on this entropy's properties and on three examples.

Bibliography

  1. R. Alicki and M. Fannes, Defining Quantum Dynamical Entropy, Lett. Math. Phys. 32 (1994), 75-82.
  2. R. Alicki, J. Andries, M. Fannes and P. Tuyls, An Algebraic Approach to the Kolmogorov-Sinai Entropy, Rev. Math. Phys. 8 (2) (1996), 167-184.
  3. R. Alicki, D. Makowiec, W. Miklaszewski, Quantum Chaos in Terms of Entropy for the Periodically Kicked Top, Phys. Rev. Lett. 77 (1996), 838-841.
  4. R. Alicki and H. Narnhofer, Comparison of Dynamical Entropies for the Noncommutative Shifts, Lett. Math. Phys. 33 (1995), 241-247.
  5. J. Andries, M. Fannes, P. Tuyls and R. Alicki, The Dynamical Entropy of the Quantum Arnold Cat Map, Lett. Math. Phys. 35 (1995), 375-383.
  6. F. Benatti, T. Hudetz and A. Knauf, Quantum Chaos and Dynamical Entropy, preprint no. 268, SFB 288, TU Berlin, June 1997 (submitted).
  7. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. I / Vol. II (2nd ed.), Springer, New York/Heidelberg/Berlin, 1981/1987.
  8. A. Connes, H. Narnhofer and W. Thirring, Dynamical Entropy of C* Algebras and von Neumann Algebras, Commun. Math. Phys. 112 (1987), 691-719.
  9. A. Connes and E. Størmer, Entropy for Automorphisms of II1 von Neumann Algebras, Acta Math. 134 (1975), 289-306.
  10. V. Ya. Golodets and E. Størmer: Entropy of C*-Dynamical Systems Defined by Bitstreams, preprint no. 18, Dept. of Mathematics, Univ. of Oslo, August 1996.
  11. T. Hudetz, A `Hybrid' State-Dependent Dynamical Entropy for C*-Algebra Automorphisms, preprint, Univ. of Vienna (to be submitted).
  12. A. N. Kolmogorov, A New Metric Invariant of Transitive Systems and Automorphisms of Lebesgue Spaces, Dokl. Akad. Nauk SSSR 119 (1958), 861-864. Ya. G. Sinai, On the Concept of Entropy of a Dynamical System, Dokl. Akad. Nauk SSSR 124 (1959), 768-771.
  13. H. Narnhofer, E. Størmer and W. Thirring, C* Dynamical Systems for Which the Tensor Product Formula for Entropy Fails, Ergod. Th. & Dynam. Sys. 15 (1995), 961-968.
  14. H. Narnhofer and W. Thirring, C*-Dynamical Systems that Asymptotically are Highly Anticommutative, Lett. Math. Phys. 35 (1995), 145-154.
  15. G. Lindblad, Dynamical Entropy for Quantum Systems, in: Quantum Probability and Applications Vol. III, L. Accardi and W. von Waldenfels (eds.), Springer LNM 1303, Berlin, 1988, pp. 183-191.
  16. M. Ohya and D. Petz, Quantum Entropy and Its Use, Springer Texts and Monographs in Physics, Berlin/Heidelberg/New York, 1993.
  17. R. T. Powers and G. L. Price, Binary Shifts on the Hyperfinite II1 Factor, Contemporary Math. 145 (1993), 453-464.
  18. R. T. Powers and G. L. Price, Cocycle Conjugacy Classes of Shifts on the Hyperfinite II1 Factor, J. Funct. Anal. 121 (1994), 275-295.
  19. G. L. Price, The Entropy of Rational Powers Shifts, preprint, Department of Mathematics, United States Naval Academy (Annapolis, Maryland), 1996.
  20. E. Størmer and D. Voiculescu, Entropy of Bogoliubov Automorphisms of the Canonical Anticommutation Relations, Commun. Math. Phys. 133 (1990), 521-542.
  21. P. Tuyls, Towards Quantum Kolmogorov-Sinai Entropy, Ph.D. Thesis, Univ. Leuven, 1997. Quantization: Non-commutative Dynamical Entropy, Rep. Math. Phys. 38 (1996), 437-442.
  22. D. V. Voiculescu, Dynamical Approximation Entropies and Topological Entropy in Operator Algebras, Commun. Math. Phys. 170 (1995), 249-281.
Pages:
241-251
Main language of publication
English
Published
1998
Exact and natural sciences