ArticleOriginal scientific text

Title

Dilation theorems for completely positive maps and map-valued measures

Authors 1, 1, 1

Affiliations

  1. Faculty of Mathematics, Łódź University, ul. Banacha 22, 90-238 Łódź, Poland

Abstract

The Stinespring theorem is reformulated in terms of conditional expectations in a von Neumann algebra. A generalisation for map-valued measures is obtained.

Keywords

completely positive map, von Neumann algebra, dilation, map-valued measure

Bibliography

  1. L. Accardi and M. Ohya, Compound channels, transition expectations and liftings, preprint.
  2. O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, I, II New York-Heidelberg-Berlin, Springer, (1979).
  3. D. E. Evans and J. T. Lewis, Dilation of irreversible evolutions in algebraic quantum theory, Communications of the Dublin Institute for Advanced Studies, Series A (Theoretical Physics) 24 (1977).
  4. E. Hensz-Chądzyńska, R. Jajte and A. Paszkiewicz, Dilation theorems for positive operator-valued measures, Probab. Math. Statist. 17 (1997), 365-375.
  5. K. R. Parthasarathy, A continuous time version of Stinespring's theorem on completely positive maps, Quantum probability and Applications V, Proceedings, Heidelberg 1988, L. Accardi, W. von Waldenfels (eds.), Lecture Notes Math., Springer-Verlag (1988).
  6. W. F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc. 6 (1965), 211-216.
  7. S. Strătilă, Modular theory in operator algebras, Editura Academiei, Bucuresti, Abacus Press (1981).
  8. S. Strătilă and L. Zsidó, Lectures on von Neumann algebras, Editura Academiei, Bucuresti, (1979).
  9. B. Sz.-Nagy, Extensions of linear transformations in Hilbert space which extend beyond this space, Appendix to: F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Ungar Publishing Co.
  10. M. Takesaki, Theory of operator algebras, I, Springer, Berlin-Heidelberg-New York (1979).
Pages:
231-239
Main language of publication
English
Published
1998
Exact and natural sciences