ArticleOriginal scientific text

Title

Probability and quanta: why back to Nelson?

Authors 1

Affiliations

  1. Institute of Theoretical Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław, Poland

Abstract

We establish circumstances under which the dispersion of passive contaminants in a forced flow can be consistently interpreted as a Markovian diffusion process.

Bibliography

  1. Ph. Blanchard and P. Garbaczewski, Natural boundaries for the Smoluchowski equation and affiliated diffusion processes, Phys. Rev. E 49, (1994), 3815.
  2. K. L. Chung and Z. Zhao, From Brownian Motion to Schrödinger Equation, Springer-Verlag, Berlin, 1995.
  3. M. Freidlin, Functional Integration and Partial Differential Equations, Princeton University Press, Princeton, 1985.
  4. P. Garbaczewski, J. R. Klauder and R. Olkiewicz, Schrödinger problem, Lévy processes, and noise in relativistic quantum mechanics, Phys. Rev. E 51, (1995), 4114.
  5. P. Garbaczewski and R. Olkiewicz, Feynman-Kac kernels in Markovian representations of the Schrödinger interpolating dynamics, J. Math. Phys. 37, (1996), 730.
  6. P. Garbaczewski, Schrödinger's interpolation problem through Feynman-Kac kernels, Acta Phys. Polon. B 27, (1996), 617.
  7. P.Garbaczewski and G. Kondrat, Burgers velocity fields and dynamical transport processes, Phys. Rev. Lett. 77, (1996), 2608.
  8. P. Garbaczewski, G. Kondrat and R. Olkiewicz, Burgers flows as Markovian diffusion processes, Phys. Rev. E 55, (1997), 1401.
  9. W. Horsthemke and R. Lefever, Noise-Induced Transitions, Springer-Verlag, Berlin, 1984.
  10. C. Marchioro and M. Pulvirenti, Vortex methods in Two-Dimensional Fluid Dynamics, Lecture Notes in Physics 203, Springer-Verlag, Berlin, 1984.
  11. E. Nelson, Dynamical Theories of the Brownian Motion, Princeton University Press, Princeton, 1967.
  12. H. Spohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag, Berlin, 1992.
  13. H. Risken, The Fokker-Planck Equation, Springer-Verlag, Berlin, 1989.
  14. E. Schrödinger, Relativistic electron, Ann. Inst. Henri Poincaré, 2, (1932), 269.
  15. J. C. Zambrini, Variational processes and stochastic versions of mechanics, J. Math. Phys. 27, (1986), 3207.
Pages:
191-199
Main language of publication
English
Published
1998
Exact and natural sciences