PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 43 | 1 | 147-155
Tytuł artykułu

Hall's transformation via quantum stochastic calculus

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is well known that Hall's transformation factorizes into a composition of two isometric maps to and from a certain completion of the dual of the universal enveloping algebra of the Lie algebra of the initial Lie group. In this paper this fact will be demonstrated by exhibiting each of the maps in turn as the composition of two isometries. For the first map we use classical stochastic calculus, and in particular a stochastic analogue of the Dyson perturbation expansion. For the second map we make use of quantum stochastic calculus, in which the circumambient space is the complexification of the Lie algebra equipped with the ad-invariant inner product.
Słowa kluczowe
Rocznik
Tom
43
Numer
1
Strony
147-155
Opis fizyczny
Daty
wydano
1998
Twórcy
  • URA Géométrie-Analyse-Topologie, Université des Sciences et Technologies de Lille, F-59 655 Villeneuve d'Ascq Cedex, France
  • Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, SK-81 473 Bratislava, Slovakia
  • Indian Statistical Institute, 7, Sansanwal Marg, New Delhi 110016, India
  • Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, SK-81 473 Bratislava, Slovakia
Bibliografia
  • [Barg] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Part I, Commun. Pure Appl. Math. 24 (1961) 187-214.
  • [ChPr] V. Chari and A. Pressley, Quantum Groups, Cambridge 1994.
  • [Driv] B. K. Driver, On the Kakutani-Ito-Segal-Gross and the Segal-Bargmann-Hall Isomorphisms, J. Funct. Anal. 133 (1995), 69-128.
  • [DrGr] B. K. Driver and L. Gross, Hilbert spaces of holomorphic functions on complex Lie groups, in: New Trends in Stochastic Analysis, ed. K. D. Elworthy et al., World Scientific 1997.
  • [Eyre] T. M. W. Eyre, Chaotic expansions of elements of the universal enveloping superalgebra associated with a $ℤ_2$-graded quantum stochastic calculus, preprint, to appear in Commun. Math. Phys.
  • [EyHu] T. M. W. Eyre and R. L. Hudson, Generalized Boson Fermion equivalence and representations of Lie superalgebras in quantum stochastic calculus, Commun. Math. Phys. 186 (1997) 87-94.
  • [Gros] L. Gross, Uniqueness of ground states for Schrödinger operators over loop groups, J. Funct. Anal. 112 (1993), 373-441.
  • [GrMa] L. Gross and P. Malliavin, Hall's transformation and the Segal-Bargmann map, in: Ito's stochastic calculus and probability theory, ed. M. Fukushima et al., Springer 1996.
  • [Hall] B. Hall, The Segal-Bargmann 'coherent state' transform for compact Lie groups, J. Funct. Anal. 122 (1994), 103-151.
  • [Huds] R. L. Hudson, Translation-invariant quantizations and algebraic structures on phase space, Rep. Math. Phys. 10 (1976), 9-20.
  • [HuPa] R. L. Hudson and K. R. Parthasarathy, Quantum Ito's formula and stochastic evolutions, Commun. Math. Phys. 93 (1984) 301-322.
  • [HuPa2] R. L. Hudson and K. R. Parthasarathy, Unification of Boson and Fermion quantum stochastic calculus, Commun. Math. Phys. 104 (1986) 457-470.
  • [HuPu] R. L. Hudson and S. Pulmannová, Chaotic expansions of elements of the universal enveloping algebra of a Lie algebra associated with a quantum stochastic calculus, preprint, to appear in Proc. London Math. Soc.
  • [Sega] I. E. Segal, Tensor algebras over Hilbert spaces II, Ann. Math. (2) 63 (1956), 106-134.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv43i1p147bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.