ArticleOriginal scientific text

Title

Numerical application of knot invariants and universality of random knotting

Authors 1, 2

Affiliations

  1. Department of Physics, Ochanomizu University, Ohtsuka 2-1-1, Bunkyo-ku, Tokyo 112, Japan
  2. Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan

Abstract

We study universal properties of random knotting by making an extensive use of isotopy invariants of knots. We define knotting probability (PK(N)) by the probability of an N-noded random polygon being topologically equivalent to a given knot K. The question is the following: for a given model of random polygon how the knotting probability changes with respect to the number N of polygonal nodes? Through numerical simulation we see that the knotting probability can be expressed by a simple function of N. From the result we propose a universal exponent of PK(N), which may be a new numerical invariant of knots.

Bibliography

  1. D. Bar-Natan, Topology 34 (1995) 423-472.
  2. J. S. Birman and X. S. Lin, Invent. Math. 111 (1993), 225-270.
  3. Y. D. Chen, J. Chem. Phys. 75 (1981), 2447-2453.
  4. F. B. Dean, A. Stasiak, T. Koller and N. R. Cozzarelli, J. Biol. Chem. 260 (1985), 4795-4983.
  5. T. Deguchi and K. Tsurusaki, Phys. Lett. A 174 (1993), 29-37.
  6. T. Deguchi and K. Tsurusaki, J. Phys. Soc. Jpn. 62 (1993), 1411-1414.
  7. T. Deguchi and K. Tsurusaki, J. Knot Theory and Its Ramifications 3(1994), 321-353.
  8. T. Deguchi and K. Tsurusaki, A Universality of Random Knotting, preprint 1995.
  9. M. Delbrück, in Mathematical Problems in the Biological Sciences, ed. R.E. Bellman, Proc. Symp. Appl. Math. 14 (1962) 55-63.
  10. J. des Cloizeaux and M. L. Mehta, J. Phys. (Paris) 40 (1979), 665-670.
  11. Y. Diao, N. Pippenger and D. W. Sumners, J. Knot Theory and Its Ramifications 3 (1994), 419-429.
  12. S. F. Edwards, J. Phys. A1 (1968) 15-28.
  13. H. L. Frisch and E. Wasserman, C J. Amer. Chem. Soc. 83 (1961), 3789-3794.
  14. F. Jaeger, D. L. Vertigan and D. J. A. Welsh, Math. Proc. Camb. Phil. Soc. 108 (1990), 35-53.
  15. E. J. Janse van Rensburg and S. G. Whittington, J. Phys. A: Math. Gen. 23 (1990), 3573-3590.
  16. K. Koniaris and M. Muthukumar, Phys. Rev. Lett. 66 (1991), 2211-2214.
  17. J. P. J. Michels and F. W. Wiegel, Phys. Lett. 90A (1982), 381-384.
  18. Random Knotting and Linking, eds. K. C. Millett and D. W. Sumners, World Scientific, Singapore, 1994.
  19. M. Polyak and O. Viro, Intern. Math. Res. Notices, (1994), 445-453.
  20. T. M. Przytycka and J. H. Przytycki, in Graph Structure Theory, eds. N. Robertson and P. Seymour, Contemp. math. AMS 147 (1993), 63-108.
  21. V. V. Rybenkov, N. R. Cozzarelli and A. V. Vologodskii, Proc. Natl. Acad. Sci. USA 90 (1993), 5307-5311.
  22. S. Y. Shaw and J. C. Wang, Science 260 (1993), 533-536.
  23. K. Shishido, N. Komiyama and S. Ikawa, J. Mol, Biol. 195 (1987), 215-218.
  24. D. W. Sumners and S. G. Whittington, J. Phys. A : Math. Gen. 21 (1988), 1689-1694.
  25. N. Pippenger, Discrete Applied Math. 25 (1989), 273-278.
  26. K. Tsurusaki, Thesis: Statistical Study of Random Knotting, University of Tokyo, 1995.
  27. K. Tsurusaki and T. Deguchi, J. Phys. Soc. Jpn. 64 (1995), 1506-1518.
  28. A. V. Vologodskii, A. V. Lukashin, M. D. Frank-Kamenetskii and V. V. Anshele- vich, Sov. Phys. JETP 39 (1974), 1059-1063.
Pages:
77-85
Main language of publication
English
Published
1998
Exact and natural sciences