ArticleOriginal scientific text

Title

On manifold spines and cyclic presentations of groups

Authors 1, 2, 3

Affiliations

  1. Dipartimento di Matematica, Università di Modena, Via Campi 213/B, 41100 Modena, Italy
  2. Dipartimento di Matematica, Università di Milano, Via C. Saldini 50, 20133 Milano, Italy
  3. Institute of Mathematics, University of Ljubljana, P.O. Box 2964, Ljubljana 1001, Slovenia

Abstract

This is a survey of results and open problems on compact 3-manifolds which admit spines corresponding to cyclic presentations of groups. We also discuss questions concerning spines of knot manifolds and regular neighborhoods of homotopically PL embedded compacta in 3-manifolds.

Bibliography

  1. B. G. Casler, An embedding theorem for connected 3-manifolds with boundary, Proc. Amer. Math. Soc. 16 (1965), 559-566.
  2. A. Cavicchioli, Imbeddings of polyhedra in 3-manifolds, Annali di Mat. Pura ed Appl. 162 (1992), 157-177.
  3. A. Cavicchioli, Neuwirth manifolds and colourings of graphs, Aequationes Math. 44 (1992), 168-187.
  4. A. Cavicchioli and F. Hegenbarth, Knot manifolds with isomorphic spines, Fund. Math. 145 (1994), 79-89.
  5. A. Cavicchioli, F. Hegenbarth and A. C. Kim, A geometric study of Sieradski groups, Algebra Colloq. 5 (1998), to appear.
  6. A. Cavicchioli, W. B. R. Lickorish and D. Repovš, On the equivalent spines problem, Boll. Un. Mat. Ital., to appear.
  7. A. Cavicchioli and D. Repovš, Peripheral acyclicity and homology manifolds, Annali di Mat. Pura ed Appl. 172 (1997), 5-24.
  8. A. Cavicchioli and F. Spaggiari, The classification of 3-manifolds with spines related to Fibonacci groups, in 'Algebraic Topology-Homotopy and Group Cohomology', Lect. Notes in Math., Springer Verlag 1509 (1992), 50-78.
  9. H. Helling, A. C. Kim and J. L. Mennicke, A geometric study of Fibonacci groups, Preprint Universitat Bielefeld 343 (1990).
  10. H. M. Hilden, M. T. Lozano and J. M. Montesinos, The arithmeticity of the figure eight knot orbifolds, in 'Topology '90', Walter de Gruyter Ed., Berlin - New York (1992), 169-183.
  11. C. Hog-Angeloni, W. Metzler and A. J. Sieradski, Two-dimensional homotopy and combinatorial group theory, London Math. Soc. Lect. Note Ser. 197, Cambridge Univ. Press, Cambridge, 1993.
  12. J. Howie, Cyclic presentations and (2,2k+1) torus knots, unpublished.
  13. A. C. Kim, On the Fibonacci group and related topics, Contemporary Math. 184 (1995), 231-235.
  14. D. L. Johnson and W. K. Odoni, Some results on symmetrically presented groups, Proceed. Edinburgh Math. Soc. 37 (1994), 227-237.
  15. A. Mednykh and A. Vesnin, Hyperbolic volumes of Fibonacci manifolds, Siberian Math. J. 36 (1995), 235-245.
  16. J. L. Mennicke, On Fibonacci groups and some other groups, Proceed. of Groups-Korea 1988, Pusan, August 1988, 117-123.
  17. J. Milnor, On the 3-dimensional Brieskorn manifolds M(p,q,r), in 'Knots, Groups and 3-Manifolds' (L. P. Neuwirth Ed.), Ann. of Math. Studies 84, Princeton Univ. Press, Princeton, N. J., 1975, 175-225.
  18. W. J. R. Mitchell, J. H. Przytycki and D. Repovš, On spines of knot spaces, Bull. Polish Acad. Sci. 37 (1989), 563-565.
  19. L. Neuwirth, An algorithm for the construction of 3-manifolds from 2-complexes, Proc. Camb. Phil. Soc. 64 (1968), 603-613.
  20. D. Repovš, Regular neighbourhoods of homotopically PL embedded compacta in 3-manifolds, Suppl. Rend. Circ. Mat. Palermo 18 (1988), 415-422.
  21. P. Scott, The Geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487.
  22. A. J. Sieradski, Combinatorial squashings, 3-manifolds, and the third homotopy of groups, Invent. Math. 84 (1986), 121-139.
  23. R. Thomas, On a question of Kim concerning certain group presentations, Bull. Korean Math. Soc. 28 (1991), 219-244.
Pages:
49-56
Main language of publication
English
Published
1998
Exact and natural sciences