Department of Mathematics, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558, Japan
Bibliografia
[1] S. Akbulut and J. D. McCarthy, Casson's invariant for oriented homology 3-spheres - an exposition, Mathematical Notes, vol. 36, Princeton University Press, 1990.
[2] D. Bar-Natan, Non-associative tangles, in: Geometric Topology (W. H. Kazez, ed.), AMS/IP Studies in Advanced Mathematics, vol. 2.1, American Mathematical Society and International Press, 1997, (1993 Georgia International Topology Conference, August 2-13, 1993, University of Georgia, Athens, Georgia), pp. 139-183.
[3] D. Bar-Natan, On the Vassiliev knot invariant, Topology 34 (1995), 423-472.
[4] M. Kontsevich, Vassiliev's knot invariants, Advances in Soviet Mathematics (1993), 137-150.
[5] T. Q. T. Le, H. Murakami, J. Murakami, and T. Ohtsuki, A three-manifold invariant derived from the universal Vassiliev-Kontsevich invariant, Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), 125-127.
[6] T. Q. T. Le, H. Murakami, J. Murakami, and T. Ohtsuki, A three-manifold invariant via the Kontsevich integral, preprint, Max-Planck-Institut für Mathematik, Bonn, MPI/95-62, 1995.
[7] T. Q. T. Le, J. Murakami, and T. Ohtsuki, On a universal perturbative invariant of 3-manifolds, to appear in Topology.
[8] C. Lescop, Global surgery formula for the Casson-Walker invariant, Annals of Mathematics Studies, vol. 140, Princeton University Press, 1996.
[9] K. Walker, An extension of Casson's invariant, Annals of Mathematics Studies, vol. 126, Princeton University Press, 1992.