ArticleOriginal scientific text

Title

Calculation of the Casson-Walker-Lescop invariant from chord diagrams

Authors 1

Affiliations

  1. Department of Mathematics, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558, Japan

Keywords

Vassiliev invariant, chord diagram, Kontsevich integral, Casson-Walker-Lescop invariant

Bibliography

  1. S. Akbulut and J. D. McCarthy, Casson's invariant for oriented homology 3-spheres - an exposition, Mathematical Notes, vol. 36, Princeton University Press, 1990.
  2. D. Bar-Natan, Non-associative tangles, in: Geometric Topology (W. H. Kazez, ed.), AMS/IP Studies in Advanced Mathematics, vol. 2.1, American Mathematical Society and International Press, 1997, (1993 Georgia International Topology Conference, August 2-13, 1993, University of Georgia, Athens, Georgia), pp. 139-183.
  3. D. Bar-Natan, On the Vassiliev knot invariant, Topology 34 (1995), 423-472.
  4. M. Kontsevich, Vassiliev's knot invariants, Advances in Soviet Mathematics (1993), 137-150.
  5. T. Q. T. Le, H. Murakami, J. Murakami, and T. Ohtsuki, A three-manifold invariant derived from the universal Vassiliev-Kontsevich invariant, Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), 125-127.
  6. T. Q. T. Le, H. Murakami, J. Murakami, and T. Ohtsuki, A three-manifold invariant via the Kontsevich integral, preprint, Max-Planck-Institut für Mathematik, Bonn, MPI/95-62, 1995.
  7. T. Q. T. Le, J. Murakami, and T. Ohtsuki, On a universal perturbative invariant of 3-manifolds, to appear in Topology.
  8. C. Lescop, Global surgery formula for the Casson-Walker invariant, Annals of Mathematics Studies, vol. 140, Princeton University Press, 1996.
  9. K. Walker, An extension of Casson's invariant, Annals of Mathematics Studies, vol. 126, Princeton University Press, 1992.
Pages:
243-254
Main language of publication
English
Published
1998
Exact and natural sciences