ArticleOriginal scientific text
Title
Estimating the states of the Kauffman bracket skein module
Authors 1
Affiliations
- Department of Mathematics, Boise State University, Boise, Idaho 83725, U.S.A.
Abstract
The states of the title are a set of knot types which suffice to create a generating set for the Kauffman bracket skein module of a manifold. The minimum number of states is a topological invariant, but quite difficult to compute. In this paper we show that a set of states determines a generating set for the ring of characters of the fundamental group, which in turn provides estimates of the invariant.
Bibliography
- G. Brumfiel and H. M. Hilden, SL(2) representations of finitely presented groups, Contemporary Mathematics 187 (1995).
- D. Bullock, The (2,∞)-skein module of the complement of a (2,2p+1) torus knot, J. Knot Theory Ramifications 4 no. 4 (1995) 619-632.
- D. Bullock, On the Kauffman bracket skein module of surgery on a trefoil, Pacific J. Math., to appear.
- D. Bullock, A finite set of generators for the Kauffman bracket skein algebra, preprint.
- D. Bullock, Estimating a skein module with
characters, Proc. Amer. Math. Soc., to appear. - M. Culler and P. Shalen, Varieties of group representations and splittings of 3-manifolds, Ann. Math. 117 (1983) 109-146.
- R. Fricke and F. Klein, Vorlesungen über die Theorie der automorphen Functionen, Vol. 1, B. G. Teubner, Leipzig 1897.
- W. Goldman, The Symplectic Nature of Fundamental Groups of Surfaces, Adv. Math. 54 no. 2 (1984) 200-225.
- R. Horowitz, Characters of free groups represented in the two dimensional linear group, Comm. Pure Appl. Math. 25 (1972) 635-649.
- J. Hoste and J. H. Przytycki, The (2,∞)-skein module of lens spaces; a generalization of the Jones polynomial, J. Knot Theory Ramifications 2 no. 3 (1993) 321-333.
- J. Hoste and J. H. Przytycki, The Kauffman bracket skein module of
, Math Z. 220 (1995) 65-73. - W. Magnus, Rings of Fricke characters and automorphism groups of free groups, Math. Z. 170 (1980), 91-103.
- H. Vogt, Sur les invariants fondamentaux des équations différentielles linéaires du second ordre, Ann. Sci. École Norm. Supér. III. Sér. 6 (1889), 3-72.