ArticleOriginal scientific text

Title

A TQFT for Wormhole cobordisms over the field of rational functions

Authors 1

Affiliations

  1. Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803, U.S.A.

Abstract

We consider a cobordism category whose morphisms are punctured connected sums of S1×S2's (wormhole spaces) with embedded admissibly colored banded trivalent graphs. We define a TQFT on this cobordism category over the field of rational functions in an indeterminant A. For r large, we recover, by specializing A to a primitive 4rth root of unity, the Witten-Reshetikhin-Turaev TQFT restricted to links in wormhole spaces. Thus, for r large, the rth Witten-Reshetikhin-Turaev invariant of a link in some wormhole space, properly normalized, is the value of a certain rational function at eπi2r. We relate our work to Hoste and Przytycki's calculation of the Kauffman bracket skein module of S1×S2.

Bibliography

  1. [A] M. F. Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 175-186.
  2. [BHMV] C. Blanchet, N. Habegger, G. Masbaum, P. Vogel, Topological Quantum Field Theories Derived from the Kauffman Bracket, Topology 34 (1995), 883-927.
  3. [G] P. Gilmer, Invariants for 1-dimensional cohomology classes arising from TQFT, Top. and its Appl. 75 (1997), 217-259.
  4. [HP] J. Hoste, J. Przytycki, The Kauffman Bracket Skein Module of S1×S2, Math. Zeit. 220 (1995), 65-73.
  5. [J] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bulletin AMS 12 (1985), 103-111.
  6. [K] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), 395-407.
  7. [KL] L. H. Kauffman, S. Lins, Temperley Lieb recoupling theory and invariants of 3-manifolds, Annals of Math Studies 91994), Princeton Univ. Press, Princeton N.J.
  8. [Ki] R. Kirby, The Topology of 4-manifolds, Springer Lecture Notes in Math. 1374.
  9. [La] R. Lawrence, Asymptotic expansions of Witten-Reshetikhin-Turaev invariants for some simple 3-manifolds, J. Math. Phys. 36 (1995), 6106-6129.
  10. [L] W. B. R. Lickorish, The skein Method for three manifolds, J. of Knot Th. and its Ramif. 2 (1993), 171-194.
  11. [MV] G. Masbaum, P. Vogel, Verlinde Formulae for surfaces with spin structure, Geometric Topology, Joint U.S. Israel Workshop on Geometric Topology June 10-16, 1992 Technion, Haifa, Israel Contemporary Mathematics 164 (Gordon, Moriah, Waynryb, ed.), American Math. Soc., 1994, 119-137.
  12. [RT] N. Reshetikhin, V. Turaev, Invariants of 3-manifolds via link-polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
  13. [R] J. Roberts, Skein Theory and Turaev-Viro invariants, Topology 34 (1995), 771-787.
  14. [W] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989), 351-399.
Pages:
119-127
Main language of publication
English
Published
1998
Exact and natural sciences