Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 42 | 1 | 111-117

Tytuł artykułu

The $p_1$-central extension of the Mapping Class Group of orientable surfaces

Autorzy

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
Topological Quantum Field Theories are closely related to representations of Mapping Class Groups of surfaces. Considering the case of the TQFTs derived from the Kauffman bracket, we describe the central extension coming from this representation, which is just a projective extension.

Rocznik

Tom

42

Numer

1

Strony

111-117

Daty

wydano
1998

Twórcy

  • Département de Mathématiques, Université de Nantes, 2, rue de la Houssinière, 44072 Nantes Cedex 03, France

Bibliografia

  • [A1] M. Atiyah, Topological quantum field theories, Publ. Math. IHES 68 (1989), 175-186 .
  • [A2] M. Atiyah, On framings of 3-manifolds, Topology 29 (1990), 1-7.
  • [BHMV1] C. Blanchet, N. Habegger, G. Masbaum and P. Vogel, Three-manifold invariants derived from the Kauffman bracket, Topology 31 (1992), 685-699.
  • [BHMV2] C. Blanchet, N. Habegger, G. Masbaum and P. Vogel, Remarks on the Three-manifold Invariants $θ_p$, in 'Operator Algebras, Mathematical Physics, and Low Dimensional Topology' (NATO Workshop July 1991) Edited by R. Herman and B. Tanbay, Research Notes in Mathematics Vol 5, 39-59.
  • [BHMV3] C. Blanchet, N. Habegger, G. Masbaum and P. Vogel, Topological Quantum Field Theories derived from the Kauffman bracket, Topology 34 (1995), 883-927.
  • [G1] S. Gervais, Etude de certaines extensions centrales du 'mapping class group' des surfaces orientables, thèse, Université de Nantes, 1994.
  • [G2] S. Gervais, Presentation and central extensions of Mapping Class Groups, Trans. of Amer. Math. Soc. 348 (1996), 3097-3132.
  • [M-R] G. Masbaum and J. Roberts, On Central Extensions of Mapping Class Groups, Math. Ann. 302 (1995), 131-150.
  • [St] N. Steenrod, The topology of fibre bundles, Princeton University Press, 1951.
  • [W] B. Wajnryb, A simple presentation for the Mapping Class Group of an orientable surface, Israel Journal of Math. 45 (1983), 157-174 .

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-bcpv42i1p111bwm