ArticleOriginal scientific textThe
Title
The -central extension of the Mapping Class Group of orientable surfaces
Authors 1
Affiliations
- Département de Mathématiques, Université de Nantes, 2, rue de la Houssinière, 44072 Nantes Cedex 03, France
Abstract
Topological Quantum Field Theories are closely related to representations of Mapping Class Groups of surfaces. Considering the case of the TQFTs derived from the Kauffman bracket, we describe the central extension coming from this representation, which is just a projective extension.
Bibliography
- [A1] M. Atiyah, Topological quantum field theories, Publ. Math. IHES 68 (1989), 175-186 .
- [A2] M. Atiyah, On framings of 3-manifolds, Topology 29 (1990), 1-7.
- [BHMV1] C. Blanchet, N. Habegger, G. Masbaum and P. Vogel, Three-manifold invariants derived from the Kauffman bracket, Topology 31 (1992), 685-699.
- [BHMV2] C. Blanchet, N. Habegger, G. Masbaum and P. Vogel, Remarks on the Three-manifold Invariants
, in 'Operator Algebras, Mathematical Physics, and Low Dimensional Topology' (NATO Workshop July 1991) Edited by R. Herman and B. Tanbay, Research Notes in Mathematics Vol 5, 39-59. - [BHMV3] C. Blanchet, N. Habegger, G. Masbaum and P. Vogel, Topological Quantum Field Theories derived from the Kauffman bracket, Topology 34 (1995), 883-927.
- [G1] S. Gervais, Etude de certaines extensions centrales du 'mapping class group' des surfaces orientables, thèse, Université de Nantes, 1994.
- [G2] S. Gervais, Presentation and central extensions of Mapping Class Groups, Trans. of Amer. Math. Soc. 348 (1996), 3097-3132.
- [M-R] G. Masbaum and J. Roberts, On Central Extensions of Mapping Class Groups, Math. Ann. 302 (1995), 131-150.
- [St] N. Steenrod, The topology of fibre bundles, Princeton University Press, 1951.
- [W] B. Wajnryb, A simple presentation for the Mapping Class Group of an orientable surface, Israel Journal of Math. 45 (1983), 157-174 .